Translation speed slowdown and poleward migration of western North Pacific tropical cyclones

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-08-24 DOI:10.1038/s41612-024-00748-5
Xiangbo Feng
{"title":"Translation speed slowdown and poleward migration of western North Pacific tropical cyclones","authors":"Xiangbo Feng","doi":"10.1038/s41612-024-00748-5","DOIUrl":null,"url":null,"abstract":"Detecting and interpreting long-term changes in typhoon translation speed in observations remains challenging, contrasting with increased confidence in the poleward migration of typhoons. Here, I show a significant relationship between the basin-wide translation speed and the latitudinal position of tropical cyclones in the western North Pacific over 1980–2023. First, because tropical cyclones move faster at higher latitudes, the significant poleward migration (80 km/decade) increases the yearly basin-wide translation speed by 5% over the period. This effect reduces the detectability of a slowing trend. Second, the basin-wide translation speed solely contributed by regional translation speed has slowed by 18%, mostly in the late stage of the cyclone lifecycle. The translation speed slowdown and the poleward migration are likely caused by the same climate drivers through the interconnected large-scale atmospheric circulation between the tropics and subtropics. My findings suggest exacerbated tropical cyclone-related risk in the subtropical regions in a changing climate.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00748-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00748-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and interpreting long-term changes in typhoon translation speed in observations remains challenging, contrasting with increased confidence in the poleward migration of typhoons. Here, I show a significant relationship between the basin-wide translation speed and the latitudinal position of tropical cyclones in the western North Pacific over 1980–2023. First, because tropical cyclones move faster at higher latitudes, the significant poleward migration (80 km/decade) increases the yearly basin-wide translation speed by 5% over the period. This effect reduces the detectability of a slowing trend. Second, the basin-wide translation speed solely contributed by regional translation speed has slowed by 18%, mostly in the late stage of the cyclone lifecycle. The translation speed slowdown and the poleward migration are likely caused by the same climate drivers through the interconnected large-scale atmospheric circulation between the tropics and subtropics. My findings suggest exacerbated tropical cyclone-related risk in the subtropical regions in a changing climate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北太平洋西部热带气旋的平移速度减慢和向极地迁移
从观测数据中探测和解释台风平移速度的长期变化仍然具有挑战性,这与人们对台风向极地移动的信心增强形成了鲜明对比。在此,我展示了 1980-2023 年间北太平洋西部热带气旋的全海盆平移速度与纬度位置之间的显著关系。首先,由于热带气旋在高纬度地区移动速度更快,显著的向极地迁移(80 公里/十年)使这一时期的全海盆年平移速度增加了 5%。这种效应降低了对减缓趋势的可探测性。其次,完全由区域平移速度造成的全流域平移速度减慢了 18%,这主要发生在气旋生命周期的后期。平移速度减慢和向极地迁移可能是由相同的气候驱动因素通过热带和亚热带之间相互关联的大尺度大气环流造成的。我的研究结果表明,在不断变化的气候中,亚热带地区与热带气旋相关的风险加剧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
A reconstructed PDO history from an ice core isotope record on the central Tibetan Plateau Projecting dry-wet abrupt alternation across China from the perspective of soil moisture Increasing Arctic dust suppresses the reduction of ice nucleation in the Arctic lower troposphere by warming Attribution of summer 2022 extreme wildfire season in Southwest France to anthropogenic climate change Improving PM10 sensor accuracy in urban areas through calibration in Timișoara
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1