P-type doped AlxGa1-xAs nanowire photocathode: A theoretical perspective on structural and optoelectronic properties

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-08-24 DOI:10.1016/j.micrna.2024.207959
{"title":"P-type doped AlxGa1-xAs nanowire photocathode: A theoretical perspective on structural and optoelectronic properties","authors":"","doi":"10.1016/j.micrna.2024.207959","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the effect of p-type doping on the structural, electronic, and optical properties of Al<sub>x</sub>Ga<sub>1-x</sub>As nanowires are investigated by first-principles calculations. Different doping elements (Be, Mg, Zn), doping methods (interstitial and substitution doping) and doping concentration are considered. The calculations of formation energy suggest that the structural stability of p-type Al<sub>x</sub>Ga<sub>1-x</sub>As nanowires is gradually weaken as the rise of doping concentration and Al composition. Besides, the difficulty of forming substitution doping for different doping elements obeys the following order: Be &lt; Mg &lt; Zn. In addition, the substitution doping atom tends to replace Ga atom rather than Al atom to form substitution doping structure. After substitution doping, all energy bands shift to higher energy region due to the orbital hybridization of electronic states induced by impurity atom and nanowire atoms. Moreover, the substitution doping leads to the Fermi level entering into the valence band, resulting in obviously p-type conductivity. The p-type modulation doping is indeed effective in the axial type Al<sub>x</sub>Ga<sub>1-x</sub>As nanowires with p-type carrier concentration varying between 1.85 × 10<sup>20</sup> cm<sup>−3</sup> and 4.42 × 10<sup>20</sup> cm<sup>−3</sup>, and the conductivity will be further enhanced with increasing substitution doping concentration or Al composition. Finally, the optical absorption of Al<sub>x</sub>Ga<sub>1-x</sub>As nanowire photocathodes can be effectively enhanced through Be<sub>Ga</sub> doping. Our findings not only present a comprehensive understanding of p-type doping mechanism of Al<sub>x</sub>Ga<sub>1-x</sub>As nanowires, but also provide a theoretical basis for preparing Al<sub>x</sub>Ga<sub>1-x</sub>As nanowire based photoelectric devices with p-type properties.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the effect of p-type doping on the structural, electronic, and optical properties of AlxGa1-xAs nanowires are investigated by first-principles calculations. Different doping elements (Be, Mg, Zn), doping methods (interstitial and substitution doping) and doping concentration are considered. The calculations of formation energy suggest that the structural stability of p-type AlxGa1-xAs nanowires is gradually weaken as the rise of doping concentration and Al composition. Besides, the difficulty of forming substitution doping for different doping elements obeys the following order: Be < Mg < Zn. In addition, the substitution doping atom tends to replace Ga atom rather than Al atom to form substitution doping structure. After substitution doping, all energy bands shift to higher energy region due to the orbital hybridization of electronic states induced by impurity atom and nanowire atoms. Moreover, the substitution doping leads to the Fermi level entering into the valence band, resulting in obviously p-type conductivity. The p-type modulation doping is indeed effective in the axial type AlxGa1-xAs nanowires with p-type carrier concentration varying between 1.85 × 1020 cm−3 and 4.42 × 1020 cm−3, and the conductivity will be further enhanced with increasing substitution doping concentration or Al composition. Finally, the optical absorption of AlxGa1-xAs nanowire photocathodes can be effectively enhanced through BeGa doping. Our findings not only present a comprehensive understanding of p-type doping mechanism of AlxGa1-xAs nanowires, but also provide a theoretical basis for preparing AlxGa1-xAs nanowire based photoelectric devices with p-type properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P 型掺杂 AlxGa1-xAs 纳米线光电阴极:结构和光电特性的理论视角
本文通过第一原理计算研究了 p 型掺杂对 AlxGa1-xAs 纳米线的结构、电子和光学特性的影响。考虑了不同的掺杂元素(Be、Mg、Zn)、掺杂方法(间隙掺杂和置换掺杂)和掺杂浓度。形成能的计算表明,随着掺杂浓度和铝成分的增加,p 型 AlxGa1-xAs 纳米线的结构稳定性逐渐减弱。此外,不同掺杂元素形成替代掺杂的难度服从以下顺序:Be < Mg < Zn。此外,取代掺杂原子倾向于取代 Ga 原子而不是 Al 原子,从而形成取代掺杂结构。替代掺杂后,由于杂质原子和纳米线原子诱导的电子态轨道杂化,所有能带都向高能区移动。此外,置换掺杂导致费米级进入价带,从而产生明显的 p 型导电性。在轴向型 AlxGa1-xAs 纳米线中,p 型载流子浓度在 1.85 × 1020 cm-3 和 4.42 × 1020 cm-3 之间,p 型调制掺杂确实有效。最后,AlxGa1-xAs 纳米线光电阴极的光吸收可以通过掺杂 BeGa 得到有效增强。我们的研究结果不仅全面揭示了 AlxGa1-xAs 纳米线的 p 型掺杂机理,而且为制备具有 p 型特性的 AlxGa1-xAs 纳米线光电器件提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1