An ultra broadband metamaterial absorber based on metal-dielectric-metal technology for THz spectrum

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2024-08-17 DOI:10.1016/j.nancom.2024.100531
Sachin Sharma , Fatemeh Kazemi , Pankaj Singh , Anup Kumar , Ferdows B. Zarrabi
{"title":"An ultra broadband metamaterial absorber based on metal-dielectric-metal technology for THz spectrum","authors":"Sachin Sharma ,&nbsp;Fatemeh Kazemi ,&nbsp;Pankaj Singh ,&nbsp;Anup Kumar ,&nbsp;Ferdows B. Zarrabi","doi":"10.1016/j.nancom.2024.100531","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel ultra-broadband Metamaterial Absorber (UBMA) demonstrating significant absorption capabilities across a wide terahertz frequency range from 2.42 THz to 6.11 THz. The 3.7 THz bandwidth represents 87% of the central frequency. The proposed UBMA comprises three layers: a star-shaped metal patch on top, a dielectric substrate in the middle, and a metallic ground plane below. Simulations using CST Microwave Studio software reveal that the design achieves high absorption at five distinct frequencies: 2.47, 3.45, 4.89, 6.01, and 6.87 THz, with absorption rates of 99% for the first four peaks and 90% for the fifth peak. The study of electric field and surface current distribution provides insights into the absorption mechanism. While the UBMA exhibits polarization-independent performance, its angular response shows some sensitivity to the incident angle, especially beyond 30° Despite this, the absorber maintains over 70% absorptivity up to a 45° incidence angle for both TE and TM polarizations within specific frequency ranges. The simple structure combined with high absorption efficiency makes the UBMA suitable for THz imaging, detection, and stealth applications, although its angular sensitivity must be considered for certain applications.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000371","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel ultra-broadband Metamaterial Absorber (UBMA) demonstrating significant absorption capabilities across a wide terahertz frequency range from 2.42 THz to 6.11 THz. The 3.7 THz bandwidth represents 87% of the central frequency. The proposed UBMA comprises three layers: a star-shaped metal patch on top, a dielectric substrate in the middle, and a metallic ground plane below. Simulations using CST Microwave Studio software reveal that the design achieves high absorption at five distinct frequencies: 2.47, 3.45, 4.89, 6.01, and 6.87 THz, with absorption rates of 99% for the first four peaks and 90% for the fifth peak. The study of electric field and surface current distribution provides insights into the absorption mechanism. While the UBMA exhibits polarization-independent performance, its angular response shows some sensitivity to the incident angle, especially beyond 30° Despite this, the absorber maintains over 70% absorptivity up to a 45° incidence angle for both TE and TM polarizations within specific frequency ranges. The simple structure combined with high absorption efficiency makes the UBMA suitable for THz imaging, detection, and stealth applications, although its angular sensitivity must be considered for certain applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于金属-介电-金属技术的太赫兹频谱超宽带超材料吸收器
本文介绍了一种新型超宽带超材料吸收器(UBMA),它在 2.42 太赫兹至 6.11 太赫兹的宽太赫兹频率范围内具有显著的吸收能力。3.7 太赫兹带宽占中心频率的 87%。拟议的 UBMA 由三层组成:顶部是星形金属贴片,中间是介质基板,下面是金属接地平面。使用 CST Microwave Studio 软件进行的模拟显示,该设计在 2.47、3.45、4.89、6.01 和 6.87 THz 五个不同频率上实现了高吸收率,前四个峰值的吸收率为 99%,第五个峰值的吸收率为 90%。对电场和表面电流分布的研究有助于深入了解吸收机制。虽然 UBMA 具有与极化无关的性能,但其角度响应对入射角有一定的敏感性,尤其是在 30° 以上。尽管如此,在特定的频率范围内,该吸收器对 TE 和 TM 极化的吸收率仍保持在 70% 以上,直到 45° 入射角为止。UBMA 结构简单,吸收效率高,适合太赫兹成像、探测和隐形应用,但在某些应用中必须考虑其角度敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata Artificial neural network based misorientation correction in molecular 4x4 MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1