Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2024-12-10 DOI:10.1016/j.nancom.2024.100561
Hadi Rasmi , Mohammad Mosleh , Nima Jafari Navimipour , Mohammad Kheyrandish
{"title":"Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology","authors":"Hadi Rasmi ,&nbsp;Mohammad Mosleh ,&nbsp;Nima Jafari Navimipour ,&nbsp;Mohammad Kheyrandish","doi":"10.1016/j.nancom.2024.100561","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic Silicon Dangling Bond (ASDB) is a promising new nanoscale technology for fabricating logic gates and digital circuits. This technology offers tremendous advantages, such as small size, high speed, and low power consumption. As science and technology progress, ASDB technology may eventually replace the current VLSI technology. This nanoscale technology is still in its early stages of development. Recently, many computing circuits, such as full-adder, have been designed. However, these circuits have a common fundamental problem; they consume a lot of energy and occupy a lot of area, which reduces the performance of complex circuits. This paper proposes a novel ASDB layout for designing an efficient full-adder circuit in ASDB technology. Moreover, a four-bit ASDB ripple carry adder(RCA) is designed using the proposed ASDB full-adder. The proposed ASDB full-adder not only improves the stability of the output but also surpasses the previous works, in terms of energy and accuracy,by 90% and 38%, respectively. Also, it has very favorable conditions in terms of occupied area and is resistant to DB misalignment defects.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100561"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187877892400067X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic Silicon Dangling Bond (ASDB) is a promising new nanoscale technology for fabricating logic gates and digital circuits. This technology offers tremendous advantages, such as small size, high speed, and low power consumption. As science and technology progress, ASDB technology may eventually replace the current VLSI technology. This nanoscale technology is still in its early stages of development. Recently, many computing circuits, such as full-adder, have been designed. However, these circuits have a common fundamental problem; they consume a lot of energy and occupy a lot of area, which reduces the performance of complex circuits. This paper proposes a novel ASDB layout for designing an efficient full-adder circuit in ASDB technology. Moreover, a four-bit ASDB ripple carry adder(RCA) is designed using the proposed ASDB full-adder. The proposed ASDB full-adder not only improves the stability of the output but also surpasses the previous works, in terms of energy and accuracy,by 90% and 38%, respectively. Also, it has very favorable conditions in terms of occupied area and is resistant to DB misalignment defects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Modelling of novel ultra-efficient single layer nano-scale adder-subtractor in QCA nanotechnology Energy harvesting-based thermal aware routing protocol for lung terahertz nanosensor networks Design of triband circularly polarized hexagon shaped patch antenna using optimized Siamese heterogeneous convolutional neural networks for 5G wireless communication system Internet of harvester nano things: A future prospects Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1