Hadi Rasmi , Mohammad Mosleh , Nima Jafari Navimipour , Mohammad Kheyrandish
{"title":"Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology","authors":"Hadi Rasmi , Mohammad Mosleh , Nima Jafari Navimipour , Mohammad Kheyrandish","doi":"10.1016/j.nancom.2024.100561","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic Silicon Dangling Bond (ASDB) is a promising new nanoscale technology for fabricating logic gates and digital circuits. This technology offers tremendous advantages, such as small size, high speed, and low power consumption. As science and technology progress, ASDB technology may eventually replace the current VLSI technology. This nanoscale technology is still in its early stages of development. Recently, many computing circuits, such as full-adder, have been designed. However, these circuits have a common fundamental problem; they consume a lot of energy and occupy a lot of area, which reduces the performance of complex circuits. This paper proposes a novel ASDB layout for designing an efficient full-adder circuit in ASDB technology. Moreover, a four-bit ASDB ripple carry adder(RCA) is designed using the proposed ASDB full-adder. The proposed ASDB full-adder not only improves the stability of the output but also surpasses the previous works, in terms of energy and accuracy,by 90% and 38%, respectively. Also, it has very favorable conditions in terms of occupied area and is resistant to DB misalignment defects.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100561"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187877892400067X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic Silicon Dangling Bond (ASDB) is a promising new nanoscale technology for fabricating logic gates and digital circuits. This technology offers tremendous advantages, such as small size, high speed, and low power consumption. As science and technology progress, ASDB technology may eventually replace the current VLSI technology. This nanoscale technology is still in its early stages of development. Recently, many computing circuits, such as full-adder, have been designed. However, these circuits have a common fundamental problem; they consume a lot of energy and occupy a lot of area, which reduces the performance of complex circuits. This paper proposes a novel ASDB layout for designing an efficient full-adder circuit in ASDB technology. Moreover, a four-bit ASDB ripple carry adder(RCA) is designed using the proposed ASDB full-adder. The proposed ASDB full-adder not only improves the stability of the output but also surpasses the previous works, in terms of energy and accuracy,by 90% and 38%, respectively. Also, it has very favorable conditions in terms of occupied area and is resistant to DB misalignment defects.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.