Fernando Victor Monteiro Portela, Ana Raquel Colares de Andrade, Lívia Maria Galdino Pereira, Bruno Nascimento da Silva, Paulo Henrique Soares Peixoto, Bruno Rocha Amando, Nicole de Mello Fiallos, Pedro de Freitas Santos Manzi de Souza, Reginaldo Gonçalves de Lima-Neto, Glaucia Morgana de Melo Guedes, Débora Souza Collares Maia Castelo-Branco, Rossana de Aguiar Cordeiro
{"title":"Antibiotics stimulates the development of persistent cells in biofilms of <i>Candida albicans</i> bloodstream isolates.","authors":"Fernando Victor Monteiro Portela, Ana Raquel Colares de Andrade, Lívia Maria Galdino Pereira, Bruno Nascimento da Silva, Paulo Henrique Soares Peixoto, Bruno Rocha Amando, Nicole de Mello Fiallos, Pedro de Freitas Santos Manzi de Souza, Reginaldo Gonçalves de Lima-Neto, Glaucia Morgana de Melo Guedes, Débora Souza Collares Maia Castelo-Branco, Rossana de Aguiar Cordeiro","doi":"10.1080/08927014.2024.2396013","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida albicans</i> invasive candidiasis is considered a global health problem. In such cases, biofilm formation on implanted devices represents a therapeutic challenge and the presence of metabolically inactive persistent cells (PCs) in these communities increases their tolerance to fungicidal drugs. This study investigated the influence of amoxicillin, AMX; cefepime, CEF; gentamicin, GEN; amikacin, AMK; vancomycin, VAN; and ciprofloxacin, CIP; on the production of PCs in biofilms of <i>C. albicans</i> bloodstream isolates. 48 h-mature biofilms (<i>n</i> = 6) grown in RPMI-1640 supplemented with antibiotics were treated with 100 μg ml<sup>-1</sup> amphotericin B and then evaluated for PCs. Biofilms grown in the presence of antibiotics produced more PCs, up to 10×, when exposed to AMX and CIP; 5 × to CEF; and 6 × to GEN and VAN. The results indicate that antibiotics can modulate PC production in <i>C. albicans</i> biofilms. This scenario may have clinical repercussions in immunocompromised patients under broad-spectrum antibiotic therapy.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"593-601"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2396013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Candida albicans invasive candidiasis is considered a global health problem. In such cases, biofilm formation on implanted devices represents a therapeutic challenge and the presence of metabolically inactive persistent cells (PCs) in these communities increases their tolerance to fungicidal drugs. This study investigated the influence of amoxicillin, AMX; cefepime, CEF; gentamicin, GEN; amikacin, AMK; vancomycin, VAN; and ciprofloxacin, CIP; on the production of PCs in biofilms of C. albicans bloodstream isolates. 48 h-mature biofilms (n = 6) grown in RPMI-1640 supplemented with antibiotics were treated with 100 μg ml-1 amphotericin B and then evaluated for PCs. Biofilms grown in the presence of antibiotics produced more PCs, up to 10×, when exposed to AMX and CIP; 5 × to CEF; and 6 × to GEN and VAN. The results indicate that antibiotics can modulate PC production in C. albicans biofilms. This scenario may have clinical repercussions in immunocompromised patients under broad-spectrum antibiotic therapy.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.