{"title":"Characterization of methanogens from landfill samples: implications for sustainable biogas production.","authors":"Renjbar Muksy, Kamal Kolo","doi":"10.1080/08927014.2024.2393841","DOIUrl":null,"url":null,"abstract":"<p><p>This case study aimed to isolate and identify methanogenic bacteria from landfill soil, mud, and leachate samples to assess their role in anaerobic digestion and biogas production. Anaerobic digestion involves the breakdown of organic matter by a diverse group of bacteria under oxygen-free conditions, resulting in the production of methane and carbon dioxide. The collected samples from the landfill were cultured in a modified mineral salt medium (MSM). Microscopic observations revealed distinct coccus and bacillus morphologies of the isolated methanogenic bacteria. Gas production experiments and substrate utilization studies identified two types of methanogens. <i>Methanosarcina</i> sp., which utilized acetate and methanol for methane production, and <i>Methanobacterium</i> sp., utilizing hydrogen and carbon dioxide, as well as acetate. Scanning electron microscope (SEM) analysis confirmed the different morphotypes of the isolated methanogens. The study findings demonstrated the presence of diverse methanogens in the landfill environment, contributing to anaerobic digestion and biogas production.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"549-562"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2393841","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This case study aimed to isolate and identify methanogenic bacteria from landfill soil, mud, and leachate samples to assess their role in anaerobic digestion and biogas production. Anaerobic digestion involves the breakdown of organic matter by a diverse group of bacteria under oxygen-free conditions, resulting in the production of methane and carbon dioxide. The collected samples from the landfill were cultured in a modified mineral salt medium (MSM). Microscopic observations revealed distinct coccus and bacillus morphologies of the isolated methanogenic bacteria. Gas production experiments and substrate utilization studies identified two types of methanogens. Methanosarcina sp., which utilized acetate and methanol for methane production, and Methanobacterium sp., utilizing hydrogen and carbon dioxide, as well as acetate. Scanning electron microscope (SEM) analysis confirmed the different morphotypes of the isolated methanogens. The study findings demonstrated the presence of diverse methanogens in the landfill environment, contributing to anaerobic digestion and biogas production.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.