Yifan Ma, Shiyan Dong, Adam J Grippin, Lesheng Teng, Andrew S Lee, Betty Y S Kim, Wen Jiang
{"title":"Engineering therapeutical extracellular vesicles for clinical translation.","authors":"Yifan Ma, Shiyan Dong, Adam J Grippin, Lesheng Teng, Andrew S Lee, Betty Y S Kim, Wen Jiang","doi":"10.1016/j.tibtech.2024.08.007","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness. Herein, we summarize technological breakthroughs in EV bioengineering over the past 5 years, highlighting their improved therapeutic functionalities and potential clinical prospects. We also discuss biomanufacturing processes, regulation, and safety considerations for bioengineered EV therapies, emphasizing the significance of establishing robust frameworks to ensure translation capability, safety, and therapeutic effectiveness for successful clinical adoption.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.08.007","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness. Herein, we summarize technological breakthroughs in EV bioengineering over the past 5 years, highlighting their improved therapeutic functionalities and potential clinical prospects. We also discuss biomanufacturing processes, regulation, and safety considerations for bioengineered EV therapies, emphasizing the significance of establishing robust frameworks to ensure translation capability, safety, and therapeutic effectiveness for successful clinical adoption.
以细胞为基础的疗法正在彻底改变医学,用健康细胞或工程衍生物取代或改造功能障碍细胞,从而逆转和治愈疾病。一种很有前景的方法是使用细胞衍生的细胞外囊泡 (EV),这种囊泡具有与细胞移植类似的治疗效果,但没有生物安全风险。尽管EV的应用面临着产量有限、治疗负荷不足和靶向效率低等挑战,但生物工程领域的最新进展提高了EV的有效性。在此,我们总结了过去 5 年中 EV 生物工程领域的技术突破,重点介绍了它们所改善的治疗功能和潜在的临床前景。我们还讨论了生物工程 EV 疗法的生物制造过程、监管和安全注意事项,强调了建立健全的框架以确保转化能力、安全性和治疗效果从而成功应用于临床的重要性。
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).