Channel modeling for diffusion-based molecular MIMO communications using deep learning

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2024-08-31 DOI:10.1016/j.nancom.2024.100543
Zhen Cheng, Miaodi Chen, Heng Liu, Ming Xia, Weihua Gong
{"title":"Channel modeling for diffusion-based molecular MIMO communications using deep learning","authors":"Zhen Cheng,&nbsp;Miaodi Chen,&nbsp;Heng Liu,&nbsp;Ming Xia,&nbsp;Weihua Gong","doi":"10.1016/j.nancom.2024.100543","DOIUrl":null,"url":null,"abstract":"<div><p>Diffusion-based molecular communication (MC) system present immense potential and broad application prospects in the field of biomedicine, such as drug delivery. Molecular multiple-input multiple-output (MIMO) communication system can improve the reliability of communication in the environment. However, the channel modeling for diffusion-based molecular MIMO communication system is challenging. Most of the work on the modeling of molecular MIMO channels focuses on the traditional derivation of the channel impulse response (CIR). In this paper, we take into account an <em>M</em> × <em>N</em> molecular MIMO communication system with symmetric and asymmetric topologies. A deep neural networks (DNN) based model and Transformer-based model are proposed to predict the channel parameters in the CIR of this molecular MIMO system under different molecule types (DMT) and same molecule types (SMT), respectively. Simulation results show that the DNN-based model has best accuracy of prediction than the Transformer-based model and Long Short-Term Memory (LSTM) model under DMT. In particular, the Transformer-based model outperforms the DNN-based model and LSTM model under SMT.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"42 ","pages":"Article 100543"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000498","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion-based molecular communication (MC) system present immense potential and broad application prospects in the field of biomedicine, such as drug delivery. Molecular multiple-input multiple-output (MIMO) communication system can improve the reliability of communication in the environment. However, the channel modeling for diffusion-based molecular MIMO communication system is challenging. Most of the work on the modeling of molecular MIMO channels focuses on the traditional derivation of the channel impulse response (CIR). In this paper, we take into account an M × N molecular MIMO communication system with symmetric and asymmetric topologies. A deep neural networks (DNN) based model and Transformer-based model are proposed to predict the channel parameters in the CIR of this molecular MIMO system under different molecule types (DMT) and same molecule types (SMT), respectively. Simulation results show that the DNN-based model has best accuracy of prediction than the Transformer-based model and Long Short-Term Memory (LSTM) model under DMT. In particular, the Transformer-based model outperforms the DNN-based model and LSTM model under SMT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习为基于扩散的分子多输入多输出通信建立信道模型
基于扩散的分子通信(MC)系统在药物输送等生物医学领域具有巨大的潜力和广阔的应用前景。分子多输入多输出(MIMO)通信系统可以提高环境中通信的可靠性。然而,基于扩散的分子 MIMO 通信系统的信道建模具有挑战性。大多数分子 MIMO 信道建模工作都集中在传统的信道脉冲响应(CIR)推导上。本文考虑了具有对称和非对称拓扑结构的 M × N 分子 MIMO 通信系统。本文提出了基于深度神经网络(DNN)的模型和基于变压器的模型,分别用于预测不同分子类型(DMT)和相同分子类型(SMT)下该分子 MIMO 系统信道 CIR 中的信道参数。仿真结果表明,在 DMT 条件下,基于 DNN 的模型比基于 Transformer 的模型和长短时记忆(LSTM)模型的预测精度最高。特别是在 SMT 条件下,基于变换器的模型优于基于 DNN 的模型和 LSTM 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1