Interface issues between cathode and electrolyte in sulfide-based all-solid-state lithium batteries and improvement strategies of interface performance through cathode modification
Chenglong Wang , Yinglei Wu , Sirui Wang , Emile van der Heide , Xiaodong Zhuang
{"title":"Interface issues between cathode and electrolyte in sulfide-based all-solid-state lithium batteries and improvement strategies of interface performance through cathode modification","authors":"Chenglong Wang , Yinglei Wu , Sirui Wang , Emile van der Heide , Xiaodong Zhuang","doi":"10.1016/j.materresbull.2024.113078","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfide electrolyte-based all-solid-state lithium batteries (ASSLB) are heralded as a cornerstone for next-generation energy storage solutions, distinguished by their exceptional ionic conductivity, superior energy density, and enhanced safety features. Nonetheless, the ascendancy of sulfide-based ASSLB in augmenting energy density and elongating cycle life is curtailed by the suboptimal solid-solid interfacial contact and the compromised chemical/electrochemical stability of both the cathode and the sulfide solid electrolyte (SSE). This review dissects the quintessential challenges at the cathode-SSE interface, elucidating the underlying mechanisms contributing to elevated interfacial resistance, the formation of space charge layers, and interfacial compatibility dilemmas. It addresses the primary challenges at the cathode-SSE interface, highlighting the mechanisms behind increased interfacial resistance, chemical/electrochemical instability, and poor interfacial compatibility. It systematically explores strategies to improve the interface, including microstructure regulation, coating cathode, synthesis modification, and other treatments. Finally, it summarizes the development prospects and improvement methods of sulfide-based ASSLB.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113078"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004094/pdfft?md5=af7b2ba5e6d1b007ec4a0797af5b84f2&pid=1-s2.0-S0025540824004094-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004094","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfide electrolyte-based all-solid-state lithium batteries (ASSLB) are heralded as a cornerstone for next-generation energy storage solutions, distinguished by their exceptional ionic conductivity, superior energy density, and enhanced safety features. Nonetheless, the ascendancy of sulfide-based ASSLB in augmenting energy density and elongating cycle life is curtailed by the suboptimal solid-solid interfacial contact and the compromised chemical/electrochemical stability of both the cathode and the sulfide solid electrolyte (SSE). This review dissects the quintessential challenges at the cathode-SSE interface, elucidating the underlying mechanisms contributing to elevated interfacial resistance, the formation of space charge layers, and interfacial compatibility dilemmas. It addresses the primary challenges at the cathode-SSE interface, highlighting the mechanisms behind increased interfacial resistance, chemical/electrochemical instability, and poor interfacial compatibility. It systematically explores strategies to improve the interface, including microstructure regulation, coating cathode, synthesis modification, and other treatments. Finally, it summarizes the development prospects and improvement methods of sulfide-based ASSLB.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.