Nam Chol An, Hyon Jang, Chung Hun Kim, Un Hyang Ri, Hyon Chol Kim
{"title":"Accuracy improvement of resonant sensor by an additional electrode in the measurement of liquid density and viscosity","authors":"Nam Chol An, Hyon Jang, Chung Hun Kim, Un Hyang Ri, Hyon Chol Kim","doi":"10.1108/sr-04-2024-0289","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>In the measurement of liquid density and viscosity, the change of resonance parameters due to the parasitic parallel capacitance of resonator affects the measurement accuracy. To improve the accuracy, a method was proposed to compensate the parasitic parallel capacitance of resonator by adding an electrode.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The new electrode (compensation electrode) was added into resonant sensor to make compensation capacitance. The closer the compensation capacitance was to the parasitic parallel capacitance, the better compensation was. The structural parameters of resonant sensor with the compensation electrode were determined by the simulation and experiment.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The effect of this method was examined by the experiment. The relative errors of density and viscosity were less than 0.15, 0.5 % and standard deviations were less than 0.0004 g/cm<sup>3</sup> and 0.005 mPas, respectively.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The experimental results show that this method is valuable for the parasitic parallel capacitance compensation of immersed resonant sensor.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper has not been published in other journals.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"25 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-04-2024-0289","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
In the measurement of liquid density and viscosity, the change of resonance parameters due to the parasitic parallel capacitance of resonator affects the measurement accuracy. To improve the accuracy, a method was proposed to compensate the parasitic parallel capacitance of resonator by adding an electrode.
Design/methodology/approach
The new electrode (compensation electrode) was added into resonant sensor to make compensation capacitance. The closer the compensation capacitance was to the parasitic parallel capacitance, the better compensation was. The structural parameters of resonant sensor with the compensation electrode were determined by the simulation and experiment.
Findings
The effect of this method was examined by the experiment. The relative errors of density and viscosity were less than 0.15, 0.5 % and standard deviations were less than 0.0004 g/cm3 and 0.005 mPas, respectively.
Practical implications
The experimental results show that this method is valuable for the parasitic parallel capacitance compensation of immersed resonant sensor.
Originality/value
This paper has not been published in other journals.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.