Vedat Azrak, Özlem Öter, Sibel Oğuzlar, Elif Ant Bursalı
{"title":"Enhanced sensitivity of fluorescence-based optical CO2 sensor by using HPTS/Chitosan/ZnO/GO/polymethyl methacrylate composites","authors":"Vedat Azrak, Özlem Öter, Sibel Oğuzlar, Elif Ant Bursalı","doi":"10.1007/s10854-024-13455-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study was deeply focused on developing a novel gaseous CO<sub>2</sub> sensor based on the emission-based response of HPTS in polymethyl methacrylate/chitosan/ZnO/GO composites. HPTS is a well-known fluorescent dye that possesses a decreasing luminescence intensity at 520 nm to CO<sub>2</sub>. The ion-pair form of the HPTS was used in different composites either in thin film and fiber form. Chitosan has received important attention due to its structural characteristics such as being biocompatible, biodegradable, cost-effective, non-toxic polymer, and its suitability for gas storage. It is a biopolymer having amine-rich groups which is appropriate especially for CO<sub>2</sub> adsorption purposes. Thus, we have employed chitosan and/or zinc oxide/graphene oxide for the first time either in solid or dissolved forms in the concerned polymethyl methacrylate based matrices for enhancing CO<sub>2</sub> sensitivity. The best results were obtained for the optimum concentration of chitosan containing thin film sensor slides which exhibited 75 times higher sensitivity than the ones which do not contain any chitosan. The addition of ZnO/GO composite revealed a 14% enhancement in the sensor response and it facilitated the fiber sensor formation by electrospinning process due to its increasing effect of electrical conductivity.The HPTS/Chitosan/ZnO/GO/polymethyl methacrylate sensing composites were stable for long periods that no significant changes in the fluorescence intensity and sensor characteristics were observed over 20 months.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13455-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study was deeply focused on developing a novel gaseous CO2 sensor based on the emission-based response of HPTS in polymethyl methacrylate/chitosan/ZnO/GO composites. HPTS is a well-known fluorescent dye that possesses a decreasing luminescence intensity at 520 nm to CO2. The ion-pair form of the HPTS was used in different composites either in thin film and fiber form. Chitosan has received important attention due to its structural characteristics such as being biocompatible, biodegradable, cost-effective, non-toxic polymer, and its suitability for gas storage. It is a biopolymer having amine-rich groups which is appropriate especially for CO2 adsorption purposes. Thus, we have employed chitosan and/or zinc oxide/graphene oxide for the first time either in solid or dissolved forms in the concerned polymethyl methacrylate based matrices for enhancing CO2 sensitivity. The best results were obtained for the optimum concentration of chitosan containing thin film sensor slides which exhibited 75 times higher sensitivity than the ones which do not contain any chitosan. The addition of ZnO/GO composite revealed a 14% enhancement in the sensor response and it facilitated the fiber sensor formation by electrospinning process due to its increasing effect of electrical conductivity.The HPTS/Chitosan/ZnO/GO/polymethyl methacrylate sensing composites were stable for long periods that no significant changes in the fluorescence intensity and sensor characteristics were observed over 20 months.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.