Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-09-11 DOI:10.1016/j.cmpb.2024.108419
Shurun Wang , Hao Tang , Ryutaro Himeno , Jordi Solé-Casals , Cesar F. Caiafa , Shuning Han , Shigeki Aoki , Zhe Sun
{"title":"Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms","authors":"Shurun Wang ,&nbsp;Hao Tang ,&nbsp;Ryutaro Himeno ,&nbsp;Jordi Solé-Casals ,&nbsp;Cesar F. Caiafa ,&nbsp;Shuning Han ,&nbsp;Shigeki Aoki ,&nbsp;Zhe Sun","doi":"10.1016/j.cmpb.2024.108419","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><p>The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.</p></div><div><h3>Methods:</h3><p>This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.</p></div><div><h3>Results:</h3><p>The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.</p></div><div><h3>Conclusion:</h3><p>Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108419"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004127","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective:

The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.

Methods:

This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.

Results:

The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.

Conclusion:

Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用进化算法优化用于精神分裂症谱系障碍预测的图神经网络架构
背景和目的:精神分裂症谱系障碍的准确诊断在改善患者预后、及时干预和优化治疗方案方面发挥着重要作用。利用功能性磁共振成像数据进行的功能连接分析已被证明能为临床诊断提供宝贵的生物标志物。方法:本文提出了一种基于进化算法(EA)的图神经架构搜索(GNAS)方法。EA-GNAS能够搜索出用于精神分裂症谱系障碍预测的高性能图神经网络。结果:结果表明,利用遗传算法搜索得到的图神经网络模型在五倍交叉验证下表现优异,达到了0.1850的适配度。结论:基于精神分裂症谱系障碍患者的多站点数据集,研究结果表明该方法优于之前的方法,促进了我们对大脑功能的理解,并有可能成为诊断精神分裂症谱系障碍的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
A porohyperelastic scheme targeted at High-Performance Computing frameworks for the simulation of the intervertebral disc. Dynamic evolution analysis and parameter optimization design of data-driven network infectious disease model. Recent advancements and future directions in automatic swallowing analysis via videofluoroscopy: A review. SlicerCineTrack: An open-source research toolkit for target tracking verification in 3D Slicer. Label correlated contrastive learning for medical report generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1