Chungang Zhuang, Haowen Wang, Wanhao Niu, Han Ding
{"title":"A parallel graph network for generating 7-DoF model-free grasps in unstructured scenes using point cloud","authors":"Chungang Zhuang, Haowen Wang, Wanhao Niu, Han Ding","doi":"10.1016/j.rcim.2024.102879","DOIUrl":null,"url":null,"abstract":"<div><p>Generating model-free grasps in complex scattered scenes remains a challenging task. Most current methods adopt PointNet++ as the backbone to extract structural features, while the relative associations of geometry are underexplored, leading to non-optimal grasp prediction results. In this work, a parallelized graph-based pipeline is developed to solve the 7-DoF grasp pose generation problem with point cloud as input. Using the non-textured information of the grasping scene, the proposed pipeline simultaneously performs feature embedding and grasping location focusing in two branches, avoiding the mutual influence of the two learning processes. In the feature learning branch, the geometric features of the whole scene will be fully learned. In the location focusing branch, the high-value grasping locations on the surface of objects will be strategically selected. Using the learned graph features at these locations, the pipeline will eventually output refined grasping directions and widths in conjunction with local spatial features. To strengthen the positional features in the grasping problem, a graph convolution operator based on the positional attention mechanism is designed, and a graph residual network based on this operator is applied in two branches. The above pipeline abstracts the grasping location selection task from the main process of grasp generation, which lowers the learning difficulty while avoiding the performance degradation problem of deep graph networks. The established pipeline is evaluated on the GraspNet-1Billion dataset, demonstrating much better performance and stronger generalization capabilities than the benchmark approach. In robotic bin-picking experiments, the proposed method can effectively understand scattered grasping scenarios and grasp multiple types of unknown objects with a high success rate.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102879"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001662","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Generating model-free grasps in complex scattered scenes remains a challenging task. Most current methods adopt PointNet++ as the backbone to extract structural features, while the relative associations of geometry are underexplored, leading to non-optimal grasp prediction results. In this work, a parallelized graph-based pipeline is developed to solve the 7-DoF grasp pose generation problem with point cloud as input. Using the non-textured information of the grasping scene, the proposed pipeline simultaneously performs feature embedding and grasping location focusing in two branches, avoiding the mutual influence of the two learning processes. In the feature learning branch, the geometric features of the whole scene will be fully learned. In the location focusing branch, the high-value grasping locations on the surface of objects will be strategically selected. Using the learned graph features at these locations, the pipeline will eventually output refined grasping directions and widths in conjunction with local spatial features. To strengthen the positional features in the grasping problem, a graph convolution operator based on the positional attention mechanism is designed, and a graph residual network based on this operator is applied in two branches. The above pipeline abstracts the grasping location selection task from the main process of grasp generation, which lowers the learning difficulty while avoiding the performance degradation problem of deep graph networks. The established pipeline is evaluated on the GraspNet-1Billion dataset, demonstrating much better performance and stronger generalization capabilities than the benchmark approach. In robotic bin-picking experiments, the proposed method can effectively understand scattered grasping scenarios and grasp multiple types of unknown objects with a high success rate.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.