Effect of flavin adenine dinucleotide (FAD) on Desulfovibrio desulfuricans corrosion of pipeline welded joint.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2024-09-18 DOI:10.1080/08927014.2024.2404204
Qin Wang,Xiaobao Zhou,Zhen Zhong,Binbin Wang,Zhuowei Tan,Minghua Zhang,Tangqing Wu
{"title":"Effect of flavin adenine dinucleotide (FAD) on Desulfovibrio desulfuricans corrosion of pipeline welded joint.","authors":"Qin Wang,Xiaobao Zhou,Zhen Zhong,Binbin Wang,Zhuowei Tan,Minghua Zhang,Tangqing Wu","doi":"10.1080/08927014.2024.2404204","DOIUrl":null,"url":null,"abstract":"The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2404204","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄素腺嘌呤二核苷酸(FAD)对脱硫弧菌腐蚀管道焊接接头的影响。
本文研究了厌氧条件下黄素腺嘌呤二核苷酸(FAD)对管道焊接接头(WJ)硫酸盐还原菌(SRB)腐蚀的影响。结果表明,热影响区(HAZ)的腐蚀产物厚度低于母材(BM)和焊接区(WZ),FAD 的添加促进了 WJ 上突出微生物小瘤的发展。BM 和 WZ 试样的局部腐蚀度明显高于 HAZ 试样。此外,在 SRB 接种环境中,FAD 的添加同时促进了 WJ 三个区域的局部腐蚀,并且对 WZ 试样的促进作用更为明显。FAD对WJ中SRB腐蚀的选择性促进作用归因于WZ的特殊结构、SRB的选择性附着以及FAD/FADH2氧化还原反馈循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
A comparison of the biofouling potential of field-collected and laboratory-cultured Ulva. Effect of flavin adenine dinucleotide (FAD) on Desulfovibrio desulfuricans corrosion of pipeline welded joint. Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against Candida auris biofilms. The effect of Dunaliella salina extracts on the adhesion of Pseudomonas aeruginosa to 3D printed polyethylene terephthalate and polylactic acid. Influence of slope, material, and temperature on Listeria monocytogenes and Pseudomonas aeruginosa mono- and dual-species biofilms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1