{"title":"In-situ synthesis of 3D TiO2 microspheres on Ti mesh to enhance photoelectrochemical water splitting","authors":"Yuanmei Xu , Wenbing Chen , Xueshi Li","doi":"10.1016/j.materresbull.2024.113101","DOIUrl":null,"url":null,"abstract":"<div><p>Much attention has been focused on the fabrication of TiO<sub>2</sub> microspheres due to their excellent properties and attractive potential in many fields. Here, undoped 3D hierarchical TiO<sub>2</sub> microspheres (TMS) were synthesized in situ on Ti mesh using a hydrothermal method by varying NaOH concentration, reaction time and temperature. The 3D TMS grown along the surface of the woven wires of the Ti meshes, using the metal Ti meshes as a substrate, which resulted in improved conductivity. Meanwhile, the original Ti mesh with the macroporosity (due to the 15 % open area of the mesh) can act as fast proton mass diffusion. As a result, the flexible TMS-Ti photoelectrodes exhibit an excellent current density of 1.63 mA/cm<sup>2</sup> at a potential of 1.23 V (vs Ag/AgCl). Therefore, the in situ synthesis of TiO<sub>2</sub> microspheres on Ti mesh is highly desirable for flexible devices.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113101"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002554082400432X/pdfft?md5=d8b0c51e166f9d98a9ccf74d198fac2d&pid=1-s2.0-S002554082400432X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082400432X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Much attention has been focused on the fabrication of TiO2 microspheres due to their excellent properties and attractive potential in many fields. Here, undoped 3D hierarchical TiO2 microspheres (TMS) were synthesized in situ on Ti mesh using a hydrothermal method by varying NaOH concentration, reaction time and temperature. The 3D TMS grown along the surface of the woven wires of the Ti meshes, using the metal Ti meshes as a substrate, which resulted in improved conductivity. Meanwhile, the original Ti mesh with the macroporosity (due to the 15 % open area of the mesh) can act as fast proton mass diffusion. As a result, the flexible TMS-Ti photoelectrodes exhibit an excellent current density of 1.63 mA/cm2 at a potential of 1.23 V (vs Ag/AgCl). Therefore, the in situ synthesis of TiO2 microspheres on Ti mesh is highly desirable for flexible devices.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.