EGDP based feature extraction and deep convolutional belief network for brain tumor detection using MRI image.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-09-16 DOI:10.1080/0954898X.2024.2389248
Loganayagi T, Pooja Panapana, Ganji Ramanjaiah, Smritilekha Das
{"title":"EGDP based feature extraction and deep convolutional belief network for brain tumor detection using MRI image.","authors":"Loganayagi T, Pooja Panapana, Ganji Ramanjaiah, Smritilekha Das","doi":"10.1080/0954898X.2024.2389248","DOIUrl":null,"url":null,"abstract":"<p><p>This research presents a novel deep learning framework for MRI-based brain tumour (BT) detection. The input brain MRI image is first acquired from the dataset. Once the images have been obtained, they are passed to an image preprocessing step where a median filter is used to eliminate noise and artefacts from the input image. The tumour-tumour region segmentation module receives the denoised image and it uses RP-Net to segment the BT region. Following that, in order to prevent overfitting, image augmentation is carried out utilizing methods including rotating, flipping, shifting, and colour augmentation. Later, the augmented image is forwarded to the feature extraction phase, wherein features like GLCM and proposed EGDP formulated by including entropy with GDP are extracted. Finally, based on the extracted features, BT detection is accomplished based on the proposed deep convolutional belief network (DCvB-Net), which is formulated using the deep convolutional neural network and deep belief network.The devised DCvB-Net for BT detection is investigated for its performance concerning true negative rate, accuracy, and true positive rate is established to have acquired values of 93%, 92.3%, and 93.1% correspondingly.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2389248","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a novel deep learning framework for MRI-based brain tumour (BT) detection. The input brain MRI image is first acquired from the dataset. Once the images have been obtained, they are passed to an image preprocessing step where a median filter is used to eliminate noise and artefacts from the input image. The tumour-tumour region segmentation module receives the denoised image and it uses RP-Net to segment the BT region. Following that, in order to prevent overfitting, image augmentation is carried out utilizing methods including rotating, flipping, shifting, and colour augmentation. Later, the augmented image is forwarded to the feature extraction phase, wherein features like GLCM and proposed EGDP formulated by including entropy with GDP are extracted. Finally, based on the extracted features, BT detection is accomplished based on the proposed deep convolutional belief network (DCvB-Net), which is formulated using the deep convolutional neural network and deep belief network.The devised DCvB-Net for BT detection is investigated for its performance concerning true negative rate, accuracy, and true positive rate is established to have acquired values of 93%, 92.3%, and 93.1% correspondingly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 EGDP 特征提取和深度卷积信念网络的磁共振成像脑肿瘤检测。
本研究提出了一种新型深度学习框架,用于基于核磁共振成像的脑肿瘤(BT)检测。首先从数据集中获取输入的脑部 MRI 图像。获得图像后,将其传递到图像预处理步骤,在该步骤中使用中值滤波器消除输入图像中的噪声和伪影。肿瘤区域分割模块接收去噪图像,并使用 RP-Net 对 BT 区域进行分割。随后,为了防止过度拟合,利用旋转、翻转、移位和颜色增强等方法对图像进行增强。随后,增强后的图像被转到特征提取阶段,提取 GLCM 和建议的 EGDP 等特征,EGDP 由熵和 GDP 组成。最后,根据所提取的特征,基于所提出的深度卷积信念网络(DCvB-Net)完成 BT 检测,该网络是利用深度卷积神经网络和深度信念网络构建而成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data. Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set. Sentiment analysis using graph-based Quickprop method for product quality enhancement. Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System. Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1