Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-09-26 DOI:10.1002/jcc.27510
Jinhui Meng, Li Zhang, Zhe He, Mengfeng Hu, Jinhan Liu, Wenzhuo Bao, Qifeng Tian, Huawei Feng, Hongsheng Liu
{"title":"Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors","authors":"Jinhui Meng, Li Zhang, Zhe He, Mengfeng Hu, Jinhan Liu, Wenzhuo Bao, Qifeng Tian, Huawei Feng, Hongsheng Liu","doi":"10.1002/jcc.27510","DOIUrl":null,"url":null,"abstract":"Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking structures of complexes generated by AutoDock Vina, we integrate interaction features and ligand features, and employ support vector regression to develop a target-specific scoring function for hDHODH (TSSF-hDHODH). The Pearson correlation coefficient values of TSSF-hDHODH in the cross-validation and external validation are 0.86 and 0.74, respectively, both of which are far superior to those of classic scoring function AutoDock Vina and random forest (RF) based generic scoring function RF-Score. TSSF-hDHODH is further used for the virtual screening of potential inhibitors in the FDA-Approved & Pharmacopeia Drug Library. In conjunction with the results from molecular dynamics simulations, crizotinib is identified as a candidate for subsequent structural optimization. This study can be useful for the discovery of hDHODH inhibitors and the development of scoring functions for additional targets.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"30 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.27510","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking structures of complexes generated by AutoDock Vina, we integrate interaction features and ligand features, and employ support vector regression to develop a target-specific scoring function for hDHODH (TSSF-hDHODH). The Pearson correlation coefficient values of TSSF-hDHODH in the cross-validation and external validation are 0.86 and 0.74, respectively, both of which are far superior to those of classic scoring function AutoDock Vina and random forest (RF) based generic scoring function RF-Score. TSSF-hDHODH is further used for the virtual screening of potential inhibitors in the FDA-Approved & Pharmacopeia Drug Library. In conjunction with the results from molecular dynamics simulations, crizotinib is identified as a candidate for subsequent structural optimization. This study can be useful for the discovery of hDHODH inhibitors and the development of scoring functions for additional targets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发基于机器学习的靶标特异性评分功能,为人类二氢烟酸脱氢酶抑制剂进行基于结构的结合亲和力预测
人二氢烟酸脱氢酶(hDHODH)是一种依赖于黄素单核苷酸的酶,可以限制嘧啶的从头合成,使其成为自身免疫性疾病和癌症等疾病的治疗靶点。本研究利用 AutoDock Vina 生成的复合物对接结构,整合了相互作用特征和配体特征,并采用支持向量回归开发了 hDHODH 的靶标特异性评分函数(TSSF-hDHODH)。在交叉验证和外部验证中,TSSF-hDHODH 的皮尔逊相关系数分别为 0.86 和 0.74,均远远优于经典评分函数 AutoDock Vina 和基于随机森林(RF)的通用评分函数 RF-Score。TSSF-hDHODH 还被进一步用于虚拟筛选 FDA 批准的药典药物库中的潜在抑制剂。结合分子动力学模拟的结果,克唑替尼被确定为后续结构优化的候选药物。这项研究有助于发现 hDHODH 抑制剂,并为其他靶点开发评分功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Comprehensive Analysis of Deuterium Isotope Effects on Ionic H3O+…π Interactions Using Multi-Component Quantum Mechanics Methods MARVEL Analysis of High-Resolution Rovibrational Spectra of 16O13C18O CoTCNQ as a Catalyst for CO2 Electroreduction: A First Principles r2SCAN Meta-GGA Investigation Groupy: An Open-Source Toolkit for Molecular Simulation and Property Calculation Tuning Electronic Relaxation of Nanorings Through Their Interlocking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1