{"title":"Interaction of fullerenes C60 with pristine and substituted buckybowls: A theoretical study","authors":"Igor K. Petrushenko","doi":"10.1016/j.physe.2024.116115","DOIUrl":null,"url":null,"abstract":"<div><div>Non-covalent interactions between experimentally available buckybowls (coronene, corannulene, sumanene, triazasumanene<strong>,</strong> pentachlorocorannulene, decachlorocorannulene) and fullerenes C<sub>60</sub> were systematically studied by using several theoretical methods. Peculiarities of these interactions were determined using electrostatic potential maps, independent gradient model, and symmetry adapted perturbation theory (SAPT0). SAPT0 calculations confirmed that dispersion (contribute 63–70 % in attraction) and electrostatic interactions (23–28 %) play the major role for C<sub>60</sub> binding, whereas induction forces contribute to E<sub>int</sub> only moderately (5–7%) for all structures studied herein. Cl-substituted corannulenes were calculated to be the most favorable structures for C<sub>60</sub> binding. <em>Ab initio</em> molecular dynamics (AIMD) simulations confirmed stability of the studied complexes at different temperatures. Our investigations established the high potential of the studied buckybowls for usage in molecular tweezers.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116115"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002194","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-covalent interactions between experimentally available buckybowls (coronene, corannulene, sumanene, triazasumanene, pentachlorocorannulene, decachlorocorannulene) and fullerenes C60 were systematically studied by using several theoretical methods. Peculiarities of these interactions were determined using electrostatic potential maps, independent gradient model, and symmetry adapted perturbation theory (SAPT0). SAPT0 calculations confirmed that dispersion (contribute 63–70 % in attraction) and electrostatic interactions (23–28 %) play the major role for C60 binding, whereas induction forces contribute to Eint only moderately (5–7%) for all structures studied herein. Cl-substituted corannulenes were calculated to be the most favorable structures for C60 binding. Ab initio molecular dynamics (AIMD) simulations confirmed stability of the studied complexes at different temperatures. Our investigations established the high potential of the studied buckybowls for usage in molecular tweezers.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures