Pronounced spatial disparity of projected heatwave changes linked to heat domes and land-atmosphere coupling

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-09-30 DOI:10.1038/s41612-024-00779-y
Fenying Cai, Caihong Liu, Dieter Gerten, Song Yang, Tuantuan Zhang, Shuheng Lin, Jürgen Kurths
{"title":"Pronounced spatial disparity of projected heatwave changes linked to heat domes and land-atmosphere coupling","authors":"Fenying Cai, Caihong Liu, Dieter Gerten, Song Yang, Tuantuan Zhang, Shuheng Lin, Jürgen Kurths","doi":"10.1038/s41612-024-00779-y","DOIUrl":null,"url":null,"abstract":"Heatwaves are projected to substantially increase at a global scale, exacerbating worldwide heat-related risks in the future. However, understanding future heterogeneous heatwave changes and their origins remains challenging. By analyzing the output of various climate models from the Coupled Model Intercomparison Project Phase 6, we found pronounced spatial disparity of projected heatwave increases in the Northern Hemisphere, even outstretching seven-fold inter-regional differences in extreme heatwave occurrences, attributed primarily to future changes in heat-dome-like circulations and soil moisture–temperature coupling. Specifically, we found that by the end of the 21st century, the modulations of combined Pacific El Niño and positive Pacific Meridional Mode on magnified heat-dome-like circulations would be translated into summertime hotspots over western Asia and western North America. Amplified soil moisture–temperature couplings then further aggravate the heatwave intensity over these two hotspots. This study provides support for formulating impact-based mitigation strategies and efficiently addressing the potential future risks of heatwaves.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00779-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00779-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heatwaves are projected to substantially increase at a global scale, exacerbating worldwide heat-related risks in the future. However, understanding future heterogeneous heatwave changes and their origins remains challenging. By analyzing the output of various climate models from the Coupled Model Intercomparison Project Phase 6, we found pronounced spatial disparity of projected heatwave increases in the Northern Hemisphere, even outstretching seven-fold inter-regional differences in extreme heatwave occurrences, attributed primarily to future changes in heat-dome-like circulations and soil moisture–temperature coupling. Specifically, we found that by the end of the 21st century, the modulations of combined Pacific El Niño and positive Pacific Meridional Mode on magnified heat-dome-like circulations would be translated into summertime hotspots over western Asia and western North America. Amplified soil moisture–temperature couplings then further aggravate the heatwave intensity over these two hotspots. This study provides support for formulating impact-based mitigation strategies and efficiently addressing the potential future risks of heatwaves.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与热穹和陆地-大气耦合有关的预计热浪变化的明显空间差异
据预测,热浪将在全球范围内大幅增加,加剧未来全球与热有关的风险。然而,了解未来热浪的异质性变化及其起源仍具有挑战性。通过分析耦合模式相互比较项目第六阶段各种气候模式的输出结果,我们发现北半球预计热浪增加的空间差异明显,极端热浪发生的区域间差异甚至达到七倍之多,这主要归因于未来热岛样环流和土壤水分-温度耦合的变化。具体而言,我们发现,到 21 世纪末,太平洋厄尔尼诺现象和太平洋正向经向模式对放大的热岛样环流的联合调制将转化为亚洲西部和北美洲西部的夏季热点。被放大的土壤水分-温度耦合会进一步加剧这两个热点地区的热浪强度。这项研究为制定基于影响的减灾战略和有效应对未来热浪的潜在风险提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Dominance of open burning signatures in PM2.5 near coal plant should redefine pollutant priorities of India Climate model trend errors are evident in seasonal forecasts at short leads The slowdown of increasing groundwater storage in response to climate warming in the Tibetan Plateau Attributing the recent weakening of the South Asian subtropical westerlies Hybrid physics-AI outperforms numerical weather prediction for extreme precipitation nowcasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1