Xiao-Yan Wang, Shao-Hong Wu, Jiao Ren, Yan Zeng, Li-Li Guo
{"title":"Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.","authors":"Xiao-Yan Wang, Shao-Hong Wu, Jiao Ren, Yan Zeng, Li-Li Guo","doi":"10.1097/RTI.0000000000000817","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor (EGFR) and TP53 mutations and to assess the models' capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses.</p><p><strong>Materials and methods: </strong>A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score.</p><p><strong>Results: </strong>We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR- and EGFR+, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53- and TP53+, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model.</p><p><strong>Conclusion: </strong>Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000817","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor (EGFR) and TP53 mutations and to assess the models' capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses.
Materials and methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score.
Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR- and EGFR+, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53- and TP53+, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model.
Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.