Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Thoracic Imaging Pub Date : 2025-03-01 DOI:10.1097/RTI.0000000000000808
Neta Kenneth Portal, Shalom Rochman, Adi Szeskin, Richard Lederman, Jacob Sosna, Leo Joskowicz
{"title":"Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.","authors":"Neta Kenneth Portal, Shalom Rochman, Adi Szeskin, Richard Lederman, Jacob Sosna, Leo Joskowicz","doi":"10.1097/RTI.0000000000000808","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.</p><p><strong>Materials and methods: </strong>SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient. It is part of a fully automatic pipeline for the detection, segmentation, matching, and classification of metastatic lung lesions in longitudinal chest CT scans. A data set of 5040 metastatic lung lesions in 344 pairs of 208 prior and current chest CT scans from 79 patients was used for training/validation (173 scans, 65 patients) and testing (35 scans, 14 patients) of a standalone 3D U-Net models and 3 simultaneous SimU-Net models. Outcome measures were the lesion detection and segmentation precision, recall, Dice score, average symmetric surface distance (ASSD), lesion matching, and classification of lesion changes from computed versus manual ground-truth annotations by an expert radiologist.</p><p><strong>Results: </strong>SimU-Net achieved a mean lesion detection recall and precision of 0.93±0.13 and 0.79±0.24 and a mean lesion segmentation Dice and ASSD of 0.84±0.09 and 0.33±0.22 mm. These results outperformed the standalone 3D U-Net model by 9.4% in the recall, 2.4% in Dice, and 15.4% in ASSD, with a minor 3.6% decrease in precision. The SimU-Net pipeline achieved perfect precision and recall (1.0±0.0) for lesion matching and classification of lesion changes.</p><p><strong>Conclusions: </strong>Simultaneous deep learning analysis of metastatic lung lesions in prior and current chest CT scans with SimU-Net yields superior accuracy compared with individual analysis of each scan. Implementation of SimU-Net in the radiological workflow may enhance efficiency by automatically computing key metrics used to evaluate metastatic lung lesions and their temporal changes.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000808","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.

Materials and methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient. It is part of a fully automatic pipeline for the detection, segmentation, matching, and classification of metastatic lung lesions in longitudinal chest CT scans. A data set of 5040 metastatic lung lesions in 344 pairs of 208 prior and current chest CT scans from 79 patients was used for training/validation (173 scans, 65 patients) and testing (35 scans, 14 patients) of a standalone 3D U-Net models and 3 simultaneous SimU-Net models. Outcome measures were the lesion detection and segmentation precision, recall, Dice score, average symmetric surface distance (ASSD), lesion matching, and classification of lesion changes from computed versus manual ground-truth annotations by an expert radiologist.

Results: SimU-Net achieved a mean lesion detection recall and precision of 0.93±0.13 and 0.79±0.24 and a mean lesion segmentation Dice and ASSD of 0.84±0.09 and 0.33±0.22 mm. These results outperformed the standalone 3D U-Net model by 9.4% in the recall, 2.4% in Dice, and 15.4% in ASSD, with a minor 3.6% decrease in precision. The SimU-Net pipeline achieved perfect precision and recall (1.0±0.0) for lesion matching and classification of lesion changes.

Conclusions: Simultaneous deep learning analysis of metastatic lung lesions in prior and current chest CT scans with SimU-Net yields superior accuracy compared with individual analysis of each scan. Implementation of SimU-Net in the radiological workflow may enhance efficiency by automatically computing key metrics used to evaluate metastatic lung lesions and their temporal changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转移性肺病变的随访胸部CT变化:深度学习的优势与SimU-Net同时分析先前和当前扫描。
目的:肿瘤患者的影像学随访需要在纵向影像学研究中发现肺转移病灶并定量分析其变化。我们的目的是评估SimU-Net,一种新的深度学习方法,用于自动分析转移性肺病变及其对胸部CT扫描的时间变化。材料和方法:SimU-Net是一种同步多通道3D U-Net模型,对患者的先前和当前扫描进行配对训练。它是纵向胸部CT扫描中转移性肺病变检测、分割、匹配和分类的全自动流水线的一部分。对来自79名患者的344对208次既往和当前胸部CT扫描中的5040个转移性肺病变数据集用于训练/验证(173次扫描,65例患者)和测试(35次扫描,14例患者)独立的3D U-Net模型和3个同步的SimU-Net模型。结果测量是病变检测和分割精度,召回率,Dice评分,平均对称表面距离(ASSD),病变匹配,以及由专家放射科医生计算与手动基础真值注释的病变变化分类。结果:SimU-Net的平均病灶检测查全率和查准率分别为0.93±0.13和0.79±0.24,病灶分割Dice和ASSD分别为0.84±0.09和0.33±0.22 mm。这些结果比独立的3D U-Net模型在召回率上提高了9.4%,在Dice上提高了2.4%,在ASSD上提高了15.4%,精度降低了3.6%。SimU-Net管道在病灶匹配和病灶变化分类方面具有很好的查全率和查全率(1.0±0.0)。结论:与每次扫描的单独分析相比,SimU-Net对先前和当前胸部CT扫描中转移性肺病变的同步深度学习分析具有更高的准确性。在放射工作流程中实施SimU-Net可以通过自动计算用于评估转移性肺病变及其时间变化的关键指标来提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
期刊最新文献
Automated 3D-Body Composition Analysis as a Predictor of Survival in Patients With Idiopathic Pulmonary Fibrosis. Optimizing Quantum Iterative Reconstruction for Ultra-high-resolution Photon-counting Computed Tomography of the Lung. Automatic Quantification of Abnormal Lung Parenchymal Attenuation on Chest Computed Tomography Images Using Densitometry and Texture-based Analysis. Diagnostic Accuracy of Ultrasound Guidance in Transthoracic Needle Biopsy: A Systematic Review and Meta-Analysis. Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1