Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Thoracic Imaging Pub Date : 2024-09-20 DOI:10.1097/RTI.0000000000000808
Neta Kenneth Portal, Shalom Rochman, Adi Szeskin, Richard Lederman, Jacob Sosna, Leo Joskowicz
{"title":"Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.","authors":"Neta Kenneth Portal, Shalom Rochman, Adi Szeskin, Richard Lederman, Jacob Sosna, Leo Joskowicz","doi":"10.1097/RTI.0000000000000808","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.</p><p><strong>Materials and methods: </strong>SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient. It is part of a fully automatic pipeline for the detection, segmentation, matching, and classification of metastatic lung lesions in longitudinal chest CT scans. A data set of 5040 metastatic lung lesions in 344 pairs of 208 prior and current chest CT scans from 79 patients was used for training/validation (173 scans, 65 patients) and testing (35 scans, 14 patients) of a standalone 3D U-Net models and 3 simultaneous SimU-Net models. Outcome measures were the lesion detection and segmentation precision, recall, Dice score, average symmetric surface distance (ASSD), lesion matching, and classification of lesion changes from computed versus manual ground-truth annotations by an expert radiologist.</p><p><strong>Results: </strong>SimU-Net achieved a mean lesion detection recall and precision of 0.93±0.13 and 0.79±0.24 and a mean lesion segmentation Dice and ASSD of 0.84±0.09 and 0.33±0.22 mm. These results outperformed the standalone 3D U-Net model by 9.4% in the recall, 2.4% in Dice, and 15.4% in ASSD, with a minor 3.6% decrease in precision. The SimU-Net pipeline achieved perfect precision and recall (1.0±0.0) for lesion matching and classification of lesion changes.</p><p><strong>Conclusions: </strong>Simultaneous deep learning analysis of metastatic lung lesions in prior and current chest CT scans with SimU-Net yields superior accuracy compared with individual analysis of each scan. Implementation of SimU-Net in the radiological workflow may enhance efficiency by automatically computing key metrics used to evaluate metastatic lung lesions and their temporal changes.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000808","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.

Materials and methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient. It is part of a fully automatic pipeline for the detection, segmentation, matching, and classification of metastatic lung lesions in longitudinal chest CT scans. A data set of 5040 metastatic lung lesions in 344 pairs of 208 prior and current chest CT scans from 79 patients was used for training/validation (173 scans, 65 patients) and testing (35 scans, 14 patients) of a standalone 3D U-Net models and 3 simultaneous SimU-Net models. Outcome measures were the lesion detection and segmentation precision, recall, Dice score, average symmetric surface distance (ASSD), lesion matching, and classification of lesion changes from computed versus manual ground-truth annotations by an expert radiologist.

Results: SimU-Net achieved a mean lesion detection recall and precision of 0.93±0.13 and 0.79±0.24 and a mean lesion segmentation Dice and ASSD of 0.84±0.09 and 0.33±0.22 mm. These results outperformed the standalone 3D U-Net model by 9.4% in the recall, 2.4% in Dice, and 15.4% in ASSD, with a minor 3.6% decrease in precision. The SimU-Net pipeline achieved perfect precision and recall (1.0±0.0) for lesion matching and classification of lesion changes.

Conclusions: Simultaneous deep learning analysis of metastatic lung lesions in prior and current chest CT scans with SimU-Net yields superior accuracy compared with individual analysis of each scan. Implementation of SimU-Net in the radiological workflow may enhance efficiency by automatically computing key metrics used to evaluate metastatic lung lesions and their temporal changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
期刊最新文献
Pulmonary Aspiration Syndromes: An Imaging-based Review. Clinical Validation of a Deep Learning Algorithm for Automated Coronary Artery Disease Detection and Classification Using a Heterogeneous Multivendor Coronary Computed Tomography Angiography Data Set. Clinical and Imaging Features of Pulmonary Nodular Lymphoid Hyperplasia. Editors' Recognition for Reviewing in 2024. In Memorium-Santiago E. Rossi, MD (1971-2024).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1