{"title":"Matchmaking at the cell surface using bispecifics to put cells on their best behavior","authors":"Claudia L Driscoll , Mark R Howarth","doi":"10.1016/j.copbio.2025.103267","DOIUrl":null,"url":null,"abstract":"<div><div>Intermolecular relationships at the cell surface dictate the behavior and regulatory network of cells. Such interactions often require precise spatial control for optimal response. By binding simultaneously to two different target sites, bispecific binders can bridge molecules of interest. Despite decades of bispecific development, only recently have bispecifics been engineered with programmable, tuneable geometries to replicate natural interaction geometries or achieve new responses from unnatural arrangements. This review highlights emerging methods of protein engineering and modular bioconjugation to control pairing and orientation of binders in bispecific scaffolds. We also describe novel biophysical and phenotypic assays, which reveal how bispecific geometries change cell fate. These approaches are informing design of next-generation precision therapeutics, as well as uncovering fundamental features of signal integration.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"92 ","pages":"Article 103267"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000114","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Intermolecular relationships at the cell surface dictate the behavior and regulatory network of cells. Such interactions often require precise spatial control for optimal response. By binding simultaneously to two different target sites, bispecific binders can bridge molecules of interest. Despite decades of bispecific development, only recently have bispecifics been engineered with programmable, tuneable geometries to replicate natural interaction geometries or achieve new responses from unnatural arrangements. This review highlights emerging methods of protein engineering and modular bioconjugation to control pairing and orientation of binders in bispecific scaffolds. We also describe novel biophysical and phenotypic assays, which reveal how bispecific geometries change cell fate. These approaches are informing design of next-generation precision therapeutics, as well as uncovering fundamental features of signal integration.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.