Kanta Miura , Hiromi Shidara , Takuro Ishii , Koichi Ito , Takafumi Aoki , Yoshifumi Saijo , Jun Ohmiya
{"title":"Image quality improvement in single plane-wave imaging using deep learning","authors":"Kanta Miura , Hiromi Shidara , Takuro Ishii , Koichi Ito , Takafumi Aoki , Yoshifumi Saijo , Jun Ohmiya","doi":"10.1016/j.ultras.2024.107479","DOIUrl":null,"url":null,"abstract":"<div><div>In ultrasound image diagnosis, single plane-wave imaging (SPWI), which can acquire ultrasound images at more than 1000 fps, has been used to observe detailed tissue and evaluate blood flow. SPWI achieves high temporal resolution by sacrificing the spatial resolution and contrast of ultrasound images. To improve spatial resolution and contrast in SPWI, coherent plane-wave compounding (CPWC) is used to obtain high-quality ultrasound images, i.e., compound images, by coherent addition of radio frequency (RF) signals acquired by transmitting plane waves in different directions. Although CPWC produces high-quality ultrasound images, their temporal resolution is lower than that of SPWI. To address this problem, some methods have been proposed to reconstruct a ultrasound image comparable to a compound image from RF signals obtained by transmitting a small number of plane waves in different directions. These methods do not fully consider the properties of RF signals, resulting in lower image quality compared to a compound image. In this paper, we propose methods to reconstruct high-quality ultrasound images in SPWI by considering the characteristics of RF signal of a single plane wave to obtain ultrasound images with image quality comparable to CPWC. The proposed methods employ encoder–decoder models of 1D U-Net, 2D U-Net, and their combination to generate the high-quality ultrasound images by minimizing the loss that considers the point spread effect of plane waves and frequency spectrum of RF signals in training. We also create a public large-scale SPWI/CPWC dataset for developing and evaluating deep-learning methods. Through a set of experiments using the public dataset and our dataset, we demonstrate that the proposed methods can reconstruct higher-quality ultrasound images from RF signals in SPWI than conventional method.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002427","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In ultrasound image diagnosis, single plane-wave imaging (SPWI), which can acquire ultrasound images at more than 1000 fps, has been used to observe detailed tissue and evaluate blood flow. SPWI achieves high temporal resolution by sacrificing the spatial resolution and contrast of ultrasound images. To improve spatial resolution and contrast in SPWI, coherent plane-wave compounding (CPWC) is used to obtain high-quality ultrasound images, i.e., compound images, by coherent addition of radio frequency (RF) signals acquired by transmitting plane waves in different directions. Although CPWC produces high-quality ultrasound images, their temporal resolution is lower than that of SPWI. To address this problem, some methods have been proposed to reconstruct a ultrasound image comparable to a compound image from RF signals obtained by transmitting a small number of plane waves in different directions. These methods do not fully consider the properties of RF signals, resulting in lower image quality compared to a compound image. In this paper, we propose methods to reconstruct high-quality ultrasound images in SPWI by considering the characteristics of RF signal of a single plane wave to obtain ultrasound images with image quality comparable to CPWC. The proposed methods employ encoder–decoder models of 1D U-Net, 2D U-Net, and their combination to generate the high-quality ultrasound images by minimizing the loss that considers the point spread effect of plane waves and frequency spectrum of RF signals in training. We also create a public large-scale SPWI/CPWC dataset for developing and evaluating deep-learning methods. Through a set of experiments using the public dataset and our dataset, we demonstrate that the proposed methods can reconstruct higher-quality ultrasound images from RF signals in SPWI than conventional method.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.