A comparative study of early stage Alzheimer's disease classification using various transfer learning CNN frameworks.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-10-05 DOI:10.1080/0954898X.2024.2406946
Yajuvendra Pratap Singh, Daya Krishan Lobiyal
{"title":"A comparative study of early stage Alzheimer's disease classification using various transfer learning CNN frameworks.","authors":"Yajuvendra Pratap Singh, Daya Krishan Lobiyal","doi":"10.1080/0954898X.2024.2406946","DOIUrl":null,"url":null,"abstract":"<p><p>The current research explores the improvements in predictive performance and computational efficiency that machine learning and deep learning methods have made over time. Specifically, the application of transfer learning concepts within Convolutional Neural Networks (CNNs) has proved useful for diagnosing and classifying the various stages of Alzheimer's disease. Using base architectures such as Xception, InceptionResNetV2, DenseNet201, InceptionV3, ResNet50, and MobileNetV2, this study extends these models by adding batch normalization (BN), dropout, and dense layers. These enhancements improve the model's effectiveness and precision in addressing the specified medical issue. The proposed model is rigorously validated and evaluated using publicly available Kaggle MRI Alzheimer's data consisting of 1280 testing images and 5120 patient training images. For comprehensive performance evaluation, precision, recall, F1-score, and accuracy metrics are utilized. The findings indicate that the Xception method is the most promising of those considered. Without employing five K-fold techniques, this model obtains a 99% accuracy and 0.135 loss score. In addition, integrating five K-fold methods enhances the accuracy to 99.68% while decreasing the loss score to 0.120. The research further included the evaluation of the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for various classes and models. As a result, our model may detect and diagnose Alzheimer's disease quickly and accurately.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-29"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2406946","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The current research explores the improvements in predictive performance and computational efficiency that machine learning and deep learning methods have made over time. Specifically, the application of transfer learning concepts within Convolutional Neural Networks (CNNs) has proved useful for diagnosing and classifying the various stages of Alzheimer's disease. Using base architectures such as Xception, InceptionResNetV2, DenseNet201, InceptionV3, ResNet50, and MobileNetV2, this study extends these models by adding batch normalization (BN), dropout, and dense layers. These enhancements improve the model's effectiveness and precision in addressing the specified medical issue. The proposed model is rigorously validated and evaluated using publicly available Kaggle MRI Alzheimer's data consisting of 1280 testing images and 5120 patient training images. For comprehensive performance evaluation, precision, recall, F1-score, and accuracy metrics are utilized. The findings indicate that the Xception method is the most promising of those considered. Without employing five K-fold techniques, this model obtains a 99% accuracy and 0.135 loss score. In addition, integrating five K-fold methods enhances the accuracy to 99.68% while decreasing the loss score to 0.120. The research further included the evaluation of the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for various classes and models. As a result, our model may detect and diagnose Alzheimer's disease quickly and accurately.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用各种迁移学习 CNN 框架对早期阿尔茨海默病分类的比较研究。
目前的研究探讨了机器学习和深度学习方法在预测性能和计算效率方面的改进。具体来说,卷积神经网络(CNN)中迁移学习概念的应用已被证明有助于诊断和分类阿尔茨海默病的各个阶段。本研究利用 Xception、InceptionResNetV2、DenseNet201、InceptionV3、ResNet50 和 MobileNetV2 等基本架构,通过添加批量归一化 (BN)、剔除和密集层来扩展这些模型。这些改进提高了模型在解决特定医疗问题时的有效性和精确性。利用公开的 Kaggle 核磁共振阿尔茨海默病数据(包括 1280 张测试图像和 5120 张患者训练图像)对所提出的模型进行了严格的验证和评估。为了进行全面的性能评估,使用了精确度、召回率、F1 分数和准确度指标。研究结果表明,Xception 方法是最有前途的方法。在未采用五次 K 折技术的情况下,该模型的准确率为 99%,损失分值为 0.135。此外,整合五种 K-fold 方法可将准确率提高到 99.68%,同时将损失分降低到 0.120。研究还进一步评估了不同类别和模型的曲线下接收方操作特征区域(ROC-AUC)。因此,我们的模型可以快速准确地检测和诊断阿尔茨海默病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Performance analysis of image retrieval system using deep learning techniques. A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy. Personalized recommendation system to handle skin cancer at early stage based on hybrid model. Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network. Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1