{"title":"IG-Net: An Instrument-guided real-time semantic segmentation framework for prostate dissection during surgery for low rectal cancer","authors":"","doi":"10.1016/j.cmpb.2024.108443","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Accurate prostate dissection is crucial in transanal surgery for patients with low rectal cancer. Improper dissection can lead to adverse events such as urethral injury, severely affecting the patient’s postoperative recovery. However, unclear boundaries, irregular shape of the prostate, and obstructive factors such as smoke present significant challenges for surgeons.</div></div><div><h3>Methods:</h3><div>Our innovative contribution lies in the introduction of a novel video semantic segmentation framework, IG-Net, which incorporates prior surgical instrument features for real-time and precise prostate segmentation. Specifically, we designed an instrument-guided module that calculates the surgeon’s region of attention based on instrument features, performs local segmentation, and integrates it with global segmentation to enhance performance. Additionally, we proposed a keyframe selection module that calculates the temporal correlations between consecutive frames based on instrument features. This module adaptively selects non-keyframe for feature fusion segmentation, reducing noise and optimizing speed.</div></div><div><h3>Results:</h3><div>To evaluate the performance of IG-Net, we constructed the most extensive dataset known to date, comprising 106 video clips and 6153 images. The experimental results reveal that this method achieves favorable performance, with 72.70% IoU, 82.02% Dice, and 35 FPS.</div></div><div><h3>Conclusions:</h3><div>For the task of prostate segmentation based on surgical videos, our proposed IG-Net surpasses all previous methods across multiple metrics. IG-Net balances segmentation accuracy and speed, demonstrating strong robustness against adverse factors.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016926072400436X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective:
Accurate prostate dissection is crucial in transanal surgery for patients with low rectal cancer. Improper dissection can lead to adverse events such as urethral injury, severely affecting the patient’s postoperative recovery. However, unclear boundaries, irregular shape of the prostate, and obstructive factors such as smoke present significant challenges for surgeons.
Methods:
Our innovative contribution lies in the introduction of a novel video semantic segmentation framework, IG-Net, which incorporates prior surgical instrument features for real-time and precise prostate segmentation. Specifically, we designed an instrument-guided module that calculates the surgeon’s region of attention based on instrument features, performs local segmentation, and integrates it with global segmentation to enhance performance. Additionally, we proposed a keyframe selection module that calculates the temporal correlations between consecutive frames based on instrument features. This module adaptively selects non-keyframe for feature fusion segmentation, reducing noise and optimizing speed.
Results:
To evaluate the performance of IG-Net, we constructed the most extensive dataset known to date, comprising 106 video clips and 6153 images. The experimental results reveal that this method achieves favorable performance, with 72.70% IoU, 82.02% Dice, and 35 FPS.
Conclusions:
For the task of prostate segmentation based on surgical videos, our proposed IG-Net surpasses all previous methods across multiple metrics. IG-Net balances segmentation accuracy and speed, demonstrating strong robustness against adverse factors.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.