Multi-Scale Spatio-Temporal Memory Network for Lightweight Video Denoising

Lu Sun;Fangfang Wu;Wei Ding;Xin Li;Jie Lin;Weisheng Dong;Guangming Shi
{"title":"Multi-Scale Spatio-Temporal Memory Network for Lightweight Video Denoising","authors":"Lu Sun;Fangfang Wu;Wei Ding;Xin Li;Jie Lin;Weisheng Dong;Guangming Shi","doi":"10.1109/TIP.2024.3444315","DOIUrl":null,"url":null,"abstract":"Deep learning-based video denoising methods have achieved great performance improvements in recent years. However, the expensive computational cost arising from sophisticated network design has severely limited their applications in real-world scenarios. To address this practical weakness, we propose a multiscale spatio-temporal memory network for fast video denoising, named MSTMN, aiming at striking an improved trade-off between cost and performance. To develop an efficient and effective algorithm for video denoising, we exploit a multiscale representation based on the Gaussian-Laplacian pyramid decomposition so that the reference frame can be restored in a coarse-to-fine manner. Guided by a model-based optimization approach, we design an effective variance estimation module, an alignment error estimation module and an adaptive fusion module for each scale of the pyramid representation. For the fusion module, we employ a reconstruction recurrence strategy to incorporate local temporal information. Moreover, we propose a memory enhancement module to exploit the global spatio-temporal information. Meanwhile, the similarity computation of the spatio-temporal memory network enables the proposed network to adaptively search the valuable information at the patch level, which avoids computationally expensive motion estimation and compensation operations. Experimental results on real-world raw video datasets have demonstrated that the proposed lightweight network outperforms current state-of-the-art fast video denoising algorithms such as FastDVDnet, EMVD, and ReMoNet with fewer computational costs.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5810-5823"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10709843/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based video denoising methods have achieved great performance improvements in recent years. However, the expensive computational cost arising from sophisticated network design has severely limited their applications in real-world scenarios. To address this practical weakness, we propose a multiscale spatio-temporal memory network for fast video denoising, named MSTMN, aiming at striking an improved trade-off between cost and performance. To develop an efficient and effective algorithm for video denoising, we exploit a multiscale representation based on the Gaussian-Laplacian pyramid decomposition so that the reference frame can be restored in a coarse-to-fine manner. Guided by a model-based optimization approach, we design an effective variance estimation module, an alignment error estimation module and an adaptive fusion module for each scale of the pyramid representation. For the fusion module, we employ a reconstruction recurrence strategy to incorporate local temporal information. Moreover, we propose a memory enhancement module to exploit the global spatio-temporal information. Meanwhile, the similarity computation of the spatio-temporal memory network enables the proposed network to adaptively search the valuable information at the patch level, which avoids computationally expensive motion estimation and compensation operations. Experimental results on real-world raw video datasets have demonstrated that the proposed lightweight network outperforms current state-of-the-art fast video denoising algorithms such as FastDVDnet, EMVD, and ReMoNet with fewer computational costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于轻量级视频去噪的多尺度时空记忆网络
近年来,基于深度学习的视频去噪方法取得了巨大的性能提升。然而,复杂的网络设计所带来的昂贵计算成本严重限制了它们在现实世界中的应用。针对这一实际弱点,我们提出了一种用于快速视频去噪的多尺度时空记忆网络,命名为 MSTMN,旨在改进成本与性能之间的权衡。为了开发一种高效的视频去噪算法,我们利用了基于高斯-拉普拉斯金字塔分解的多尺度表示法,从而以从粗到细的方式恢复参考帧。在基于模型的优化方法指导下,我们为金字塔表示法的每个尺度设计了有效的方差估计模块、对齐误差估计模块和自适应融合模块。在融合模块中,我们采用了重构递归策略,以纳入局部时间信息。此外,我们还提出了一个记忆增强模块来利用全局时空信息。同时,时空记忆网络的相似性计算使所提出的网络能够自适应地在补丁级搜索有价值的信息,从而避免了计算昂贵的运动估计和补偿操作。在真实世界原始视频数据集上的实验结果表明,所提出的轻量级网络以更低的计算成本超越了目前最先进的快速视频去噪算法,如 FastDVDnet、EMVD 和 ReMoNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EvRepSL: Event-Stream Representation via Self-Supervised Learning for Event-Based Vision DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile Devices AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation Pro2Diff: Proposal Propagation for Multi-Object Tracking via the Diffusion Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1