{"title":"AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource","authors":"Wengyi Zhan;Mingbao Lin;Chia-Wen Lin;Rongrong Ji","doi":"10.1109/TIP.2024.3497807","DOIUrl":null,"url":null,"abstract":"In an effort to improve the efficiency and scalability of single-image super-resolution (SISR) applications, we introduce AnySR, to rebuild existing arbitrary-scale SR methods into any-scale, any-resource implementation. As a contrast to off-the-shelf methods that solve SR tasks across various scales with the same computing costs, our AnySR innovates in: 1) building arbitrary-scale tasks as any-resource implementation, reducing resource requirements for smaller scales without additional parameters; 2) enhancing any-scale performance in a feature-interweaving fashion, inserting scale pairs into features at regular intervals and ensuring correct feature/scale processing. The efficacy of our AnySR is fully demonstrated by rebuilding most existing arbitrary-scale SISR methods and validating on five popular SISR test datasets. The results show that our AnySR implements SISR tasks in a computing-more-efficient fashion, and performs on par with existing arbitrary-scale SISR methods. For the first time, we realize SISR tasks as not only any-scale in literature, but also as any-resource. Our code is available at \n<uri>https://github.com/CrispyFeSo4/AnySR</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6564-6578"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758378/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In an effort to improve the efficiency and scalability of single-image super-resolution (SISR) applications, we introduce AnySR, to rebuild existing arbitrary-scale SR methods into any-scale, any-resource implementation. As a contrast to off-the-shelf methods that solve SR tasks across various scales with the same computing costs, our AnySR innovates in: 1) building arbitrary-scale tasks as any-resource implementation, reducing resource requirements for smaller scales without additional parameters; 2) enhancing any-scale performance in a feature-interweaving fashion, inserting scale pairs into features at regular intervals and ensuring correct feature/scale processing. The efficacy of our AnySR is fully demonstrated by rebuilding most existing arbitrary-scale SISR methods and validating on five popular SISR test datasets. The results show that our AnySR implements SISR tasks in a computing-more-efficient fashion, and performs on par with existing arbitrary-scale SISR methods. For the first time, we realize SISR tasks as not only any-scale in literature, but also as any-resource. Our code is available at
https://github.com/CrispyFeSo4/AnySR
.