AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource

Wengyi Zhan;Mingbao Lin;Chia-Wen Lin;Rongrong Ji
{"title":"AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource","authors":"Wengyi Zhan;Mingbao Lin;Chia-Wen Lin;Rongrong Ji","doi":"10.1109/TIP.2024.3497807","DOIUrl":null,"url":null,"abstract":"In an effort to improve the efficiency and scalability of single-image super-resolution (SISR) applications, we introduce AnySR, to rebuild existing arbitrary-scale SR methods into any-scale, any-resource implementation. As a contrast to off-the-shelf methods that solve SR tasks across various scales with the same computing costs, our AnySR innovates in: 1) building arbitrary-scale tasks as any-resource implementation, reducing resource requirements for smaller scales without additional parameters; 2) enhancing any-scale performance in a feature-interweaving fashion, inserting scale pairs into features at regular intervals and ensuring correct feature/scale processing. The efficacy of our AnySR is fully demonstrated by rebuilding most existing arbitrary-scale SISR methods and validating on five popular SISR test datasets. The results show that our AnySR implements SISR tasks in a computing-more-efficient fashion, and performs on par with existing arbitrary-scale SISR methods. For the first time, we realize SISR tasks as not only any-scale in literature, but also as any-resource. Our code is available at \n<uri>https://github.com/CrispyFeSo4/AnySR</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6564-6578"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758378/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an effort to improve the efficiency and scalability of single-image super-resolution (SISR) applications, we introduce AnySR, to rebuild existing arbitrary-scale SR methods into any-scale, any-resource implementation. As a contrast to off-the-shelf methods that solve SR tasks across various scales with the same computing costs, our AnySR innovates in: 1) building arbitrary-scale tasks as any-resource implementation, reducing resource requirements for smaller scales without additional parameters; 2) enhancing any-scale performance in a feature-interweaving fashion, inserting scale pairs into features at regular intervals and ensuring correct feature/scale processing. The efficacy of our AnySR is fully demonstrated by rebuilding most existing arbitrary-scale SISR methods and validating on five popular SISR test datasets. The results show that our AnySR implements SISR tasks in a computing-more-efficient fashion, and performs on par with existing arbitrary-scale SISR methods. For the first time, we realize SISR tasks as not only any-scale in literature, but also as any-resource. Our code is available at https://github.com/CrispyFeSo4/AnySR .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AnySR:实现任意尺度、任意资源的图像超分辨率
为了提高单图像超分辨率(SISR)应用的效率和可扩展性,我们推出了 AnySR,将现有的任意规模 SR 方法重建为任意规模、任意资源的实现方法。与现成的方法相比,我们的 AnySR 在以下方面进行了创新:1)将任意尺度的任务作为任意尺度的任务来构建:1)将任意尺度任务构建为任意资源实现,无需额外参数即可降低较小尺度的资源需求;2)以特征交织方式增强任意尺度性能,以固定间隔将尺度对插入特征中,确保正确的特征/尺度处理。我们通过重建大多数现有的任意尺度 SISR 方法,并在五个流行的 SISR 测试数据集上进行验证,充分证明了我们的 AnySR 的功效。结果表明,我们的 AnySR 以计算效率更高的方式实现了 SISR 任务,与现有的任意尺度 SISR 方法性能相当。我们不仅首次在文献中实现了任意规模的 SISR 任务,还首次实现了任意资源的 SISR 任务。我们的代码见 https://github.com/CrispyFeSo4/AnySR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EvRepSL: Event-Stream Representation via Self-Supervised Learning for Event-Based Vision DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile Devices AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation Pro2Diff: Proposal Propagation for Multi-Object Tracking via the Diffusion Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1