Hu Liu, Peifeng Li, Lei Pan, Xiaoyu Zhou, Pengyu Wang, Yubin Li
{"title":"A high sensitivity biosensor based on fin-type electron-hole bilayer TFET","authors":"Hu Liu, Peifeng Li, Lei Pan, Xiaoyu Zhou, Pengyu Wang, Yubin Li","doi":"10.1016/j.mejo.2024.106437","DOIUrl":null,"url":null,"abstract":"<div><div>A novel biosensor is proposed based on the fin-type electron-hole bilayer tunnel field-effect transistor, and its sensitivity is investigated in detail using numerical simulation. Single vertical nanocavity in this biosensor facilitates the injection and filling of biomolecules and simplifies the fabrication process. This biosensor’s operation depends on the line-tunneling occurring between electron-hole bilayer, making it more sensitive to biomolecules. By investigating effects of neutral and charged biomolecules, biomolecules’ irregular distribution, probe position, and device structure on this biosensor, it follows that it is more sensitive to positively charged biomolecules with higher dielectric constant and charge density. Furthermore, it has higher sensitivity when biomolecules show an increasing distribution and the probe is located in the lower half of the nanocavity and has high filling rate. Calculation shows that at a low operating voltage of 0.5 V, its threshold voltage sensitivity, on-state current sensitivity, and subthreshold swing sensitivity are as high as 740 mV, 6.0 × 10<sup>3</sup>, and 0.92, respectively.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124001413","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel biosensor is proposed based on the fin-type electron-hole bilayer tunnel field-effect transistor, and its sensitivity is investigated in detail using numerical simulation. Single vertical nanocavity in this biosensor facilitates the injection and filling of biomolecules and simplifies the fabrication process. This biosensor’s operation depends on the line-tunneling occurring between electron-hole bilayer, making it more sensitive to biomolecules. By investigating effects of neutral and charged biomolecules, biomolecules’ irregular distribution, probe position, and device structure on this biosensor, it follows that it is more sensitive to positively charged biomolecules with higher dielectric constant and charge density. Furthermore, it has higher sensitivity when biomolecules show an increasing distribution and the probe is located in the lower half of the nanocavity and has high filling rate. Calculation shows that at a low operating voltage of 0.5 V, its threshold voltage sensitivity, on-state current sensitivity, and subthreshold swing sensitivity are as high as 740 mV, 6.0 × 103, and 0.92, respectively.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.