{"title":"Spectral data driven machine learning classification models for real time leaf spot disease detection in brinjal crops","authors":"Rohit Anand , Roaf Ahmad Parray , Indra Mani , Tapan Kumar Khura , Harilal Kushwaha , Brij Bihari Sharma , Susheel Sarkar , Samarth Godara","doi":"10.1016/j.eja.2024.127384","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development and evaluation of machine learning models for detecting leaf spot disease in brinjal crops using spectral sensor data. The spectral reflectance of diseased and healthy tissues was recorded across nine wavelength bands (F1: 415 nm, F2: 445 nm, F3: 480 nm, F4: 515 nm, F5: 555 nm, F6: 590 nm, F7: 630 nm, F8: 680 nm, and F9: NIR-750 nm). The data revealed distinct spectral signatures, particularly between F5 (555 nm) and F9 (NIR), where diseased tissues consistently showed lower reflectance compared to healthy tissues. Two machine learning algorithms, Decision Tree (DT) and Support Vector Machine (SVM), were employed to classify the spectral data. The DT model achieved a maximum testing accuracy of 88.2 %, with a Gini index and a depth of 4 as optimal hyperparameters. The confusion matrix indicated that the DT model correctly identified 883 diseased instances and 667 healthy cases, while misclassifying 213 healthy tissues as diseased and 25 diseased tissues as healthy. The SVM model, configured with a cost parameter of 10.0 and a tolerance of 0.01, outperformed the DT model, achieving a testing accuracy of 92.4 %. The SVM model correctly classified 99.3 % of diseased instances and 94.1 % of healthy cases. The results demonstrate the potential of spectral sensor data combined with ML algorithms for precise disease detection, facilitating targeted pesticide application, and reducing input costs. The high accuracy of the SVM model underscores its utility in agricultural disease management, enabling early intervention and enhancing crop health monitoring. Future research may explore integrating multiple sensors and advanced feature extraction methods to further improve the efficiency and accuracy of these systems.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"161 ","pages":"Article 127384"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124003058","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development and evaluation of machine learning models for detecting leaf spot disease in brinjal crops using spectral sensor data. The spectral reflectance of diseased and healthy tissues was recorded across nine wavelength bands (F1: 415 nm, F2: 445 nm, F3: 480 nm, F4: 515 nm, F5: 555 nm, F6: 590 nm, F7: 630 nm, F8: 680 nm, and F9: NIR-750 nm). The data revealed distinct spectral signatures, particularly between F5 (555 nm) and F9 (NIR), where diseased tissues consistently showed lower reflectance compared to healthy tissues. Two machine learning algorithms, Decision Tree (DT) and Support Vector Machine (SVM), were employed to classify the spectral data. The DT model achieved a maximum testing accuracy of 88.2 %, with a Gini index and a depth of 4 as optimal hyperparameters. The confusion matrix indicated that the DT model correctly identified 883 diseased instances and 667 healthy cases, while misclassifying 213 healthy tissues as diseased and 25 diseased tissues as healthy. The SVM model, configured with a cost parameter of 10.0 and a tolerance of 0.01, outperformed the DT model, achieving a testing accuracy of 92.4 %. The SVM model correctly classified 99.3 % of diseased instances and 94.1 % of healthy cases. The results demonstrate the potential of spectral sensor data combined with ML algorithms for precise disease detection, facilitating targeted pesticide application, and reducing input costs. The high accuracy of the SVM model underscores its utility in agricultural disease management, enabling early intervention and enhancing crop health monitoring. Future research may explore integrating multiple sensors and advanced feature extraction methods to further improve the efficiency and accuracy of these systems.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.