Meshach Ojo Aderele , Amit Kumar Srivastava , Klaus Butterbach-Bahl , Jaber Rahimi
{"title":"Integrating machine learning with agroecosystem modelling: Current state and future challenges","authors":"Meshach Ojo Aderele , Amit Kumar Srivastava , Klaus Butterbach-Bahl , Jaber Rahimi","doi":"10.1016/j.eja.2025.127610","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML), especially deep learning (DL), is gaining popularity in the agroecosystem modelling community due to its ability to improve the efficiency of computationally intensive tasks. By reviewing previous modelling studies using the PRISMA technique, we present several examples of ML applications in this domain. The potential of using such models is highligthed. The different types of integration and model-building methods are categorized into process-based modelling (PBMs) and data-driven modelling (DDMs), which simulate different aspects of agroecosystem dynamics. While PBMs excel at capturing complex biophysical and biogeochemical processes, they are computationally intensive and may not always be solvable using analytical methods. To address these challenges, machine learning (ML) techniques, including deep learning (DL), are increasingly being integrated into agroecosystem modelling. This integration involves replacing PBMs with data-driven models, using hybrid models that combine PBMs and ML, or constructing simplified versions of PBMs through meta-modelling. ML-based meta-models offer computational efficiency and can capture intricate patterns and non-linear relationships in complex agricultural systems. However, challenges such as interpretability and data requirements remain. This review highlights the importance of addressing gaps and challenges to fully realize the potential of ML to identify the most promising ways of field management in promoting sustainable agricultural systems. It also highlights specific considerations such as data requirements, interpretability, model validation, and scalability for the successful integration of ML with PBMs in agriculture and the transformative potential of combining ML with PBMs, particularly in extending simulations from field to global scales and streamlining data collection processes through advanced sensor technologies based on their applications.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"168 ","pages":"Article 127610"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125001066","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML), especially deep learning (DL), is gaining popularity in the agroecosystem modelling community due to its ability to improve the efficiency of computationally intensive tasks. By reviewing previous modelling studies using the PRISMA technique, we present several examples of ML applications in this domain. The potential of using such models is highligthed. The different types of integration and model-building methods are categorized into process-based modelling (PBMs) and data-driven modelling (DDMs), which simulate different aspects of agroecosystem dynamics. While PBMs excel at capturing complex biophysical and biogeochemical processes, they are computationally intensive and may not always be solvable using analytical methods. To address these challenges, machine learning (ML) techniques, including deep learning (DL), are increasingly being integrated into agroecosystem modelling. This integration involves replacing PBMs with data-driven models, using hybrid models that combine PBMs and ML, or constructing simplified versions of PBMs through meta-modelling. ML-based meta-models offer computational efficiency and can capture intricate patterns and non-linear relationships in complex agricultural systems. However, challenges such as interpretability and data requirements remain. This review highlights the importance of addressing gaps and challenges to fully realize the potential of ML to identify the most promising ways of field management in promoting sustainable agricultural systems. It also highlights specific considerations such as data requirements, interpretability, model validation, and scalability for the successful integration of ML with PBMs in agriculture and the transformative potential of combining ML with PBMs, particularly in extending simulations from field to global scales and streamlining data collection processes through advanced sensor technologies based on their applications.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.