Tianrui Zhao, Honglin Zhou, Miying Yan, Guoxiong Zhou, Chaoying He, Yang Hu, Xiaoyangdi Yan, Meixi Pan, Yunlong Yu, Yiting Liu
{"title":"LVR: A language and vision fusion method for rice diseases segmentation under complex environment","authors":"Tianrui Zhao, Honglin Zhou, Miying Yan, Guoxiong Zhou, Chaoying He, Yang Hu, Xiaoyangdi Yan, Meixi Pan, Yunlong Yu, Yiting Liu","doi":"10.1016/j.eja.2025.127599","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate identification of rice diseases depends on high-quality disease segmentation. However, challenges such as the complexity of the rice field environment, interference from redundant information, and slow model convergence can hinder effective segmentation. To address these issues, we propose A Language and Vision Fusion Method for Rice Diseases Segmentation under complex environment (LVR), which combines CNN and Transformer architectures. First, we present the Efficient Wavelet-based Multi-scale Attention (EWWL) module, designed to enhance the model’s ability to capture fine details of disease regions in complex environments. Next, to mitigate information redundancy, we design the KAN-segmentation (KAN-seg) module for efficient feature extraction. Additionally, we propose a Self-Adaptive Gradient Enhancement (SAGE) algorithm that dynamically adjusts the network’s learning rate, thereby accelerating convergence. Experimental results demonstrate that the LVR method achieves exceptional accuracy and robustness in rice disease segmentation, even under challenging field conditions. This provides substantial technical support for intelligent agricultural disease management and offers promising applications, particularly in the realm of smart agricultural disease monitoring and management.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"168 ","pages":"Article 127599"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125000954","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of rice diseases depends on high-quality disease segmentation. However, challenges such as the complexity of the rice field environment, interference from redundant information, and slow model convergence can hinder effective segmentation. To address these issues, we propose A Language and Vision Fusion Method for Rice Diseases Segmentation under complex environment (LVR), which combines CNN and Transformer architectures. First, we present the Efficient Wavelet-based Multi-scale Attention (EWWL) module, designed to enhance the model’s ability to capture fine details of disease regions in complex environments. Next, to mitigate information redundancy, we design the KAN-segmentation (KAN-seg) module for efficient feature extraction. Additionally, we propose a Self-Adaptive Gradient Enhancement (SAGE) algorithm that dynamically adjusts the network’s learning rate, thereby accelerating convergence. Experimental results demonstrate that the LVR method achieves exceptional accuracy and robustness in rice disease segmentation, even under challenging field conditions. This provides substantial technical support for intelligent agricultural disease management and offers promising applications, particularly in the realm of smart agricultural disease monitoring and management.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.