{"title":"Battery remaining useful life estimation based on particle swarm optimization-neural network","authors":"Zuriani Mustaffa , Mohd Herwan Sulaiman","doi":"10.1016/j.cles.2024.100151","DOIUrl":null,"url":null,"abstract":"<div><div>Determining the Remaining Useful Life (RUL) of a battery is essential for several purposes, including proactive maintenance planning, optimizing resource allocation, preventing unforeseen failures, improving safety, extending battery lifespan, and achieving accurate cost savings. Concerning that matter, this study proposed hybrid Particle Swarm Optimization–Neural Network (PSO<img>NN) for estimating battery RUL. In the evaluation of the proposed method, the effectiveness is assessed using the metrics of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The dataset employed for this investigation comprises eight input parameters and one output variable, representing the battery RUL. In conducting an analysis, the performance of the PSO<img>NN model is compared with hybrid NN with Cultural Algorithm (CA-NN) and Harmony Search Algorithm (HSA-NN), as well as the standalone Autoregressive Integrated Moving Average (ARIMA). Upon examination of the findings, it becomes evident that the PSO<img>NN model outperforms the alternatives with an MAE of 2.7708 and an RMSE of 4.3468, significantly lower than HSA-NN (MAE: 22.0583, RMSE: 34.5154), CA-NN (MAE: 9.1189, RMSE: 22.4646), and ARIMA (MAE: 494.6275, RMSE: 584.3098). The PSO<img>NN also achieves the lowest maximum error of 104.7381 compared to 490.3125 for HSA-NN, 827.0163 for CA-NN, and 1,160.0000 for ARIMA. Additionally, the low two-tail probability values (P(<em>T</em> ≤ <em>t</em>)), all below the significance level of 0.05, indicate that the differences between PSO<img>NN and the other methods (HSA-NN, CA-NN, and ARIMA) are statistically significant. These results highlight the superior accuracy and robustness of the PSO<img>NN model in predicting battery RUL. This study contributes to the field by presenting the PSO<img>NN as a highly effective tool for accurate battery RUL estimation, as evidenced by its superior performance over alternative methods.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the Remaining Useful Life (RUL) of a battery is essential for several purposes, including proactive maintenance planning, optimizing resource allocation, preventing unforeseen failures, improving safety, extending battery lifespan, and achieving accurate cost savings. Concerning that matter, this study proposed hybrid Particle Swarm Optimization–Neural Network (PSONN) for estimating battery RUL. In the evaluation of the proposed method, the effectiveness is assessed using the metrics of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The dataset employed for this investigation comprises eight input parameters and one output variable, representing the battery RUL. In conducting an analysis, the performance of the PSONN model is compared with hybrid NN with Cultural Algorithm (CA-NN) and Harmony Search Algorithm (HSA-NN), as well as the standalone Autoregressive Integrated Moving Average (ARIMA). Upon examination of the findings, it becomes evident that the PSONN model outperforms the alternatives with an MAE of 2.7708 and an RMSE of 4.3468, significantly lower than HSA-NN (MAE: 22.0583, RMSE: 34.5154), CA-NN (MAE: 9.1189, RMSE: 22.4646), and ARIMA (MAE: 494.6275, RMSE: 584.3098). The PSONN also achieves the lowest maximum error of 104.7381 compared to 490.3125 for HSA-NN, 827.0163 for CA-NN, and 1,160.0000 for ARIMA. Additionally, the low two-tail probability values (P(T ≤ t)), all below the significance level of 0.05, indicate that the differences between PSONN and the other methods (HSA-NN, CA-NN, and ARIMA) are statistically significant. These results highlight the superior accuracy and robustness of the PSONN model in predicting battery RUL. This study contributes to the field by presenting the PSONN as a highly effective tool for accurate battery RUL estimation, as evidenced by its superior performance over alternative methods.