Shape effects in binary mixtures of PA12 powder in additive manufacturing

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-10-05 DOI:10.1016/j.powtec.2024.120326
{"title":"Shape effects in binary mixtures of PA12 powder in additive manufacturing","authors":"","doi":"10.1016/j.powtec.2024.120326","DOIUrl":null,"url":null,"abstract":"<div><div>The quality of powder spread in additive manufacturing devices depends sensitively on particle shapes. Here, we study powder spreading for mixtures of spherical and irregularly shaped particles in Polyamide 12 powders. Using DEM simulations, including heat transfer, we find that spherical particles exhibit better flowability. Thus, the particles are deposited far ahead of the spreading blade. In contrast, a large fraction of non-spherical particles hinders the flow. Therefore, the cold particles are deposited near the front of the spreading blade. This results in a temperature drop of the deposited particles near the substrate, which cannot be seen with spherical particles. The particles of both shapes are homogeneously distributed in the deposited powder layer.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009707","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quality of powder spread in additive manufacturing devices depends sensitively on particle shapes. Here, we study powder spreading for mixtures of spherical and irregularly shaped particles in Polyamide 12 powders. Using DEM simulations, including heat transfer, we find that spherical particles exhibit better flowability. Thus, the particles are deposited far ahead of the spreading blade. In contrast, a large fraction of non-spherical particles hinders the flow. Therefore, the cold particles are deposited near the front of the spreading blade. This results in a temperature drop of the deposited particles near the substrate, which cannot be seen with spherical particles. The particles of both shapes are homogeneously distributed in the deposited powder layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造中 PA12 粉末二元混合物的形状效应
增材制造设备中的粉末铺展质量对颗粒形状非常敏感。在此,我们研究了聚酰胺 12 粉末中球形和不规则形状颗粒混合物的粉末铺展情况。通过 DEM 模拟(包括热传导),我们发现球形颗粒具有更好的流动性。因此,颗粒沉积在铺展叶片的前方。相反,大量非球形颗粒会阻碍流动。因此,冷颗粒沉积在铺展叶片前端附近。这导致沉积颗粒在基底附近出现温度下降,而球形颗粒则不会出现这种情况。两种形状的颗粒在沉积粉末层中分布均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Online mass-flow-rate measurement of high-intensity gas-conveyed particle flow for dry mineral processing Shape effects in binary mixtures of PA12 powder in additive manufacturing Simulation of special-shaped graded particulate hydraulic transport in deep-sea mining scenarios Reconstruction of geometrical structure of claw of Marmota and research of soil-claw interaction Analysis of difficult flotation mechanisms for coarse low-rank coal: Comparing fluidized-bed and mechanical flotation technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1