{"title":"Resonant tunneling properties of laser dressed hyperbolic Pöschl-Teller double barrier potential","authors":"Mehmet Batı","doi":"10.1016/j.physe.2024.116126","DOIUrl":null,"url":null,"abstract":"<div><div>We examine the resonant tunneling properties of the laser-dressed hyperbolic Pöschl-Teller double quantum barrier structure. We use the non-equilibrium Green's function method to investigate structure parameters and electric field bias on the transmission properties of the system. The transmission probabilities and resonance energy levels are significantly influenced by the well widths and barrier heights. The barrier height increases, resonance energy levels shift toward higher values, and the resonance peak width narrows, leading to sharper and more selective tunneling behavior. Our results show that increasing the electric field bias leads to a decrease in the transmission probability at the first resonance peak, but this effect is not as strong for the subsequent peaks. Moreover, we find that changes in the laser field's parameter and structure parameters allow for fine control over the electronic spectra, allowing for modifications like red or blue shifts based on particular needs. The significance of comprehending the interaction among structural factors, external fields, and transmission qualities in quantum barrier structures is highlighted by our research, providing valuable information for the development and enhancement of electronic and optoelectronic systems with customized functionality. Our findings show the laser field has a considerable impact on resonant tunneling properties, opening the door to new device applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116126"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002303","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the resonant tunneling properties of the laser-dressed hyperbolic Pöschl-Teller double quantum barrier structure. We use the non-equilibrium Green's function method to investigate structure parameters and electric field bias on the transmission properties of the system. The transmission probabilities and resonance energy levels are significantly influenced by the well widths and barrier heights. The barrier height increases, resonance energy levels shift toward higher values, and the resonance peak width narrows, leading to sharper and more selective tunneling behavior. Our results show that increasing the electric field bias leads to a decrease in the transmission probability at the first resonance peak, but this effect is not as strong for the subsequent peaks. Moreover, we find that changes in the laser field's parameter and structure parameters allow for fine control over the electronic spectra, allowing for modifications like red or blue shifts based on particular needs. The significance of comprehending the interaction among structural factors, external fields, and transmission qualities in quantum barrier structures is highlighted by our research, providing valuable information for the development and enhancement of electronic and optoelectronic systems with customized functionality. Our findings show the laser field has a considerable impact on resonant tunneling properties, opening the door to new device applications.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures