{"title":"Real-time fluorescence growth curves for viable bacteria quantification in foods","authors":"Yajing Chen , Yanlin Chen , Siying Tang, Biao Tang, Shengbin He","doi":"10.1016/j.fochx.2024.101886","DOIUrl":null,"url":null,"abstract":"<div><div>Here, for the first time, we used a membrane permeable fluorescent nucleic acid stain (SYBR Green) to trace the in-vivo DNA replication during bacterial binary fission. Such stain did not influence the growth of bacteria. Nor did the bacteria degrade the stain, enabling the fluorescent microplate reader to monitor sensitively the growth of the bacteria. Hence, a real-time fluorescence growth curve (RTFGC) method was put forward for the sensitive quantification of viable bacteria in foods. Using <em>E. coli</em> O157:H7 as a bacteria model, the RTFGC method could quantify bacteria within the range of 10 to 1 × 10<sup>6</sup> cfu/mL, with a linear correlation coefficient R<sup>2</sup> of 0.997. It was found that melting curve was unique for a particular bacterial strain, which could be used for contamination identifications. Good practicability of the RTFGC in quantifying <em>E. coli</em> O157:H7 from tap water, juices, and milks was demonstrated.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101886"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007740","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Here, for the first time, we used a membrane permeable fluorescent nucleic acid stain (SYBR Green) to trace the in-vivo DNA replication during bacterial binary fission. Such stain did not influence the growth of bacteria. Nor did the bacteria degrade the stain, enabling the fluorescent microplate reader to monitor sensitively the growth of the bacteria. Hence, a real-time fluorescence growth curve (RTFGC) method was put forward for the sensitive quantification of viable bacteria in foods. Using E. coli O157:H7 as a bacteria model, the RTFGC method could quantify bacteria within the range of 10 to 1 × 106 cfu/mL, with a linear correlation coefficient R2 of 0.997. It was found that melting curve was unique for a particular bacterial strain, which could be used for contamination identifications. Good practicability of the RTFGC in quantifying E. coli O157:H7 from tap water, juices, and milks was demonstrated.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.