{"title":"Subregional pedoclimatic conditions with contrasted UV-radiation shape host-microbiome and metabolome phenotypes in the grape berry.","authors":"Viviana Martins, Cécile Abdallah, António Teixeira, Carolina Moreira, Márcio Nóbrega, Arnaud Lanoue, Hernâni Gerós","doi":"10.1016/j.fochx.2024.102139","DOIUrl":null,"url":null,"abstract":"<p><p>This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with <i>Pseudomonas</i>, <i>Lactobacillus, Aspergillus</i> and <i>Penicillium</i> acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102139"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102139","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with Pseudomonas, Lactobacillus, Aspergillus and Penicillium acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.