{"title":"The stabilization mechanism of the pea protein and rutin complex at the gas/liquid interface and its application in low-fat cream.","authors":"Chunyang Xia, Fangxiao Lou, Shuo Zhang, Tianfu Cheng, Zhaodong Hu, Zengwang Guo, Ping Ma","doi":"10.1016/j.fochx.2024.102140","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest. The synergistic adsorption of Ru reduced the interfacial tension of the complexes and accelerated their diffusion, permeation, and rearrangement at the air/water interface. The results of rheology and Lissajous plots suggested that PP/Ru complexes functioned as an interfacing stabilizer, enhanced the elastic strength of interface film, and improved the stability of foam. PP/Ru complexes as a fat substitute promoted the aggregation of fat globules and the formation of fat globule network structure. When the substitution rate is 10 %, the texture, stability, and microstructure of the sample are nearly identical to those of full-fat cream.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102140"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102140","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest. The synergistic adsorption of Ru reduced the interfacial tension of the complexes and accelerated their diffusion, permeation, and rearrangement at the air/water interface. The results of rheology and Lissajous plots suggested that PP/Ru complexes functioned as an interfacing stabilizer, enhanced the elastic strength of interface film, and improved the stability of foam. PP/Ru complexes as a fat substitute promoted the aggregation of fat globules and the formation of fat globule network structure. When the substitution rate is 10 %, the texture, stability, and microstructure of the sample are nearly identical to those of full-fat cream.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.