Tuning Work Function of Fe2N@C Nanosheets by Co Doping for Enhanced Lithium Storage

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-21 DOI:10.1002/smll.202405608
Yifan Chen, Qiang Huang, Rong Zhao, Bing Sun, Wenli Xu, Yinhong Gao, Xu Nan, Qiqi Li, Yao Yang, Ye Cong, Xuanke Li, Qin Zhang, Nianjun Yang
{"title":"Tuning Work Function of Fe2N@C Nanosheets by Co Doping for Enhanced Lithium Storage","authors":"Yifan Chen, Qiang Huang, Rong Zhao, Bing Sun, Wenli Xu, Yinhong Gao, Xu Nan, Qiqi Li, Yao Yang, Ye Cong, Xuanke Li, Qin Zhang, Nianjun Yang","doi":"10.1002/smll.202405608","DOIUrl":null,"url":null,"abstract":"Transition metal nitrides (TMNs) with high theoretical capacity and excellent electrical conductivity have great potential as anode materials for lithium-ion batteries (LIBs), but suffer from poor rate performance due to the slow kinetics. Herein, taking the Fe<sub>2</sub>N for instance, Co doping is utilized to enhance the work function of Fe<sub>2</sub>N, which accelerates the charge transfer and strengthens the adsorption of Li<sup>+</sup> ions. The Fe<sub>2</sub>N nanoparticles with various Co dopants are anchoring on the surface of honeycomb porous carbon foam (named Co<i><sub>x</sub></i>-Fe<sub>2</sub>N@C). Co-doping can enlarge the work function of pristine Fe<sub>2</sub>N and thereby optimize the charging/discharging kinetics. The work function can be increased from 5.23 eV (pristine Fe<sub>2</sub>N) to 5.67 eV for Co<sub>0.3</sub>-Fe<sub>2</sub>N@C and 5.56 eV for Co<sub>0.1</sub>-Fe<sub>2</sub>N@C. As expected, the Co<sub>0.1</sub>-Fe<sub>2</sub>N@C electrode exhibits the highest specific capacity (673 mA h g<sup>−1</sup> at 100 mA g<sup>−1</sup>) and remarkable rate capability (375 mA h g<sup>−1</sup> at 5 000 mA g<sup>−1</sup>), outperforming most reported TMNs electrodes. Therefore, this work provides a promising strategy to design and regulate anode materials for high-performance and even commercially available LIBs.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405608","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal nitrides (TMNs) with high theoretical capacity and excellent electrical conductivity have great potential as anode materials for lithium-ion batteries (LIBs), but suffer from poor rate performance due to the slow kinetics. Herein, taking the Fe2N for instance, Co doping is utilized to enhance the work function of Fe2N, which accelerates the charge transfer and strengthens the adsorption of Li+ ions. The Fe2N nanoparticles with various Co dopants are anchoring on the surface of honeycomb porous carbon foam (named Cox-Fe2N@C). Co-doping can enlarge the work function of pristine Fe2N and thereby optimize the charging/discharging kinetics. The work function can be increased from 5.23 eV (pristine Fe2N) to 5.67 eV for Co0.3-Fe2N@C and 5.56 eV for Co0.1-Fe2N@C. As expected, the Co0.1-Fe2N@C electrode exhibits the highest specific capacity (673 mA h g−1 at 100 mA g−1) and remarkable rate capability (375 mA h g−1 at 5 000 mA g−1), outperforming most reported TMNs electrodes. Therefore, this work provides a promising strategy to design and regulate anode materials for high-performance and even commercially available LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂钴调节 Fe2N@C 纳米片的功函数以增强锂存储能力
过渡金属氮化物(TMNs)具有很高的理论容量和优异的导电性,作为锂离子电池(LIBs)的负极材料具有很大的潜力,但由于其缓慢的动力学特性,其速率性能较差。本文以 Fe2N 为例,利用掺杂 Co 来提高 Fe2N 的功函数,从而加速电荷转移并增强对 Li+ 离子的吸附。各种掺杂 Co 的 Fe2N 纳米粒子被锚定在蜂窝状多孔泡沫碳(命名为 Cox-Fe2N@C)表面。掺杂钴可以增大原始 Fe2N 的功函数,从而优化充放电动力学。Co0.3-Fe2N@C 和 Co0.1-Fe2N@C 的功函数分别从 5.23 eV(原始 Fe2N)和 5.56 eV 提高到 5.67 eV。正如预期的那样,Co0.1-Fe2N@C 电极表现出最高的比容量(100 mA g-1 时为 673 mA h g-1)和显著的速率能力(5 000 mA g-1 时为 375 mA h g-1),优于大多数已报道的 TMNs 电极。因此,这项工作为设计和调节高性能甚至商业化 LIB 的阳极材料提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High-Energy Lithium Storage Time-Dependent Electrical Active and Ultrasound-Responsive Calcium Titanate Implant Coating with Immunomodulation, Osteogenesis, and Customized Antibacterial Activity Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators Tuning Work Function of Fe2N@C Nanosheets by Co Doping for Enhanced Lithium Storage High Efficiency Ultra-Narrow Emission Quantum Dot Light-Emitting Diodes Enabled by Microcavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1