High Efficiency Ultra-Narrow Emission Quantum Dot Light-Emitting Diodes Enabled by Microcavity

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-21 DOI:10.1002/smll.202405704
Fengjuan Zhang, Gege Li, Penghao Zhou, Zhuoyue Chen, Jungui Zhou, Ningxiao Fang, Lingheng Kong, Qingli Lin, Stephan V. Roth, Huaibin Shen
{"title":"High Efficiency Ultra-Narrow Emission Quantum Dot Light-Emitting Diodes Enabled by Microcavity","authors":"Fengjuan Zhang, Gege Li, Penghao Zhou, Zhuoyue Chen, Jungui Zhou, Ningxiao Fang, Lingheng Kong, Qingli Lin, Stephan V. Roth, Huaibin Shen","doi":"10.1002/smll.202405704","DOIUrl":null,"url":null,"abstract":"A wide-color-gamut display enableby a narrow emission linewidth facilitates a visually immersive experience akin to the real world. Quantum dot light-emitting diodes (QLEDs) with excellent color purity and high efficiency hold great promise as future candidates for high-definition displays. However, most devices typically exhibit emission linewidths exceeding 20 nm, and lack a universal strategy for further enhancing the color purity. In this study, a planar microcavity structure for realizing ultra-narrow emissions is developed by incorporating a distributed Bragg reflector into normal electroluminescent devices. By leveraging the strong optical resonance effect derived from this microcavity structure, red QLEDs are successfully fabricated with an extraordinary full width at half maximum of 11 nm in the normal direction, beyond the BT.2020 color coordinates. The fabricated red-microcavity QLEDs exhibit a considerable enhancement in the external quantum efficiency, which increases from 28.2% to 35.6%, together with an extended operating lifetime. The strategy adopted herein will serve as an effective reference for achieving ultra-narrow emission and high-efficiency QLEDs.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405704","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A wide-color-gamut display enableby a narrow emission linewidth facilitates a visually immersive experience akin to the real world. Quantum dot light-emitting diodes (QLEDs) with excellent color purity and high efficiency hold great promise as future candidates for high-definition displays. However, most devices typically exhibit emission linewidths exceeding 20 nm, and lack a universal strategy for further enhancing the color purity. In this study, a planar microcavity structure for realizing ultra-narrow emissions is developed by incorporating a distributed Bragg reflector into normal electroluminescent devices. By leveraging the strong optical resonance effect derived from this microcavity structure, red QLEDs are successfully fabricated with an extraordinary full width at half maximum of 11 nm in the normal direction, beyond the BT.2020 color coordinates. The fabricated red-microcavity QLEDs exhibit a considerable enhancement in the external quantum efficiency, which increases from 28.2% to 35.6%, together with an extended operating lifetime. The strategy adopted herein will serve as an effective reference for achieving ultra-narrow emission and high-efficiency QLEDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微腔实现高效率超窄发射量子点发光二极管
宽色域显示器通过窄发射线宽实现了与真实世界类似的身临其境的视觉体验。量子点发光二极管(QLED)具有卓越的色彩纯度和高效率,有望成为未来高清显示器的候选器件。然而,大多数器件的发射线宽通常超过 20 纳米,而且缺乏进一步提高色彩纯度的通用策略。在本研究中,通过在普通电致发光器件中加入分布式布拉格反射器,开发出一种可实现超窄发射的平面微腔结构。利用这种微腔结构产生的强光共振效应,成功制造出了红色 QLED,其法线方向的半最大全宽为 11 nm,超出了 BT.2020 色坐标。制造出的红色微腔 QLED 外部量子效率显著提高,从 28.2% 提高到 35.6%,同时还延长了工作寿命。本文采用的策略将为实现超窄发射和高效 QLED 提供有效参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High-Energy Lithium Storage Time-Dependent Electrical Active and Ultrasound-Responsive Calcium Titanate Implant Coating with Immunomodulation, Osteogenesis, and Customized Antibacterial Activity Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators Tuning Work Function of Fe2N@C Nanosheets by Co Doping for Enhanced Lithium Storage High Efficiency Ultra-Narrow Emission Quantum Dot Light-Emitting Diodes Enabled by Microcavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1