Predicting stroke occurrences: a stacked machine learning approach with feature selection and data preprocessing.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-10-15 DOI:10.1186/s12859-024-05866-8
Pritam Chakraborty, Anjan Bandyopadhyay, Preeti Padma Sahu, Aniket Burman, Saurav Mallik, Najah Alsubaie, Mohamed Abbas, Mohammed S Alqahtani, Ben Othman Soufiene
{"title":"Predicting stroke occurrences: a stacked machine learning approach with feature selection and data preprocessing.","authors":"Pritam Chakraborty, Anjan Bandyopadhyay, Preeti Padma Sahu, Aniket Burman, Saurav Mallik, Najah Alsubaie, Mohamed Abbas, Mohammed S Alqahtani, Ben Othman Soufiene","doi":"10.1186/s12859-024-05866-8","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke prediction remains a critical area of research in healthcare, aiming to enhance early intervention and patient care strategies. This study investigates the efficacy of machine learning techniques, particularly principal component analysis (PCA) and a stacking ensemble method, for predicting stroke occurrences based on demographic, clinical, and lifestyle factors. We systematically varied PCA components and implemented a stacking model comprising random forest, decision tree, and K-nearest neighbors (KNN).Our findings demonstrate that setting PCA components to 16 optimally enhanced predictive accuracy, achieving a remarkable 98.6% accuracy in stroke prediction. Evaluation metrics underscored the robustness of our approach in handling class imbalance and improving model performance, also comparative analyses against traditional machine learning algorithms such as SVM, logistic regression, and Naive Bayes highlighted the superiority of our proposed method.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05866-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke prediction remains a critical area of research in healthcare, aiming to enhance early intervention and patient care strategies. This study investigates the efficacy of machine learning techniques, particularly principal component analysis (PCA) and a stacking ensemble method, for predicting stroke occurrences based on demographic, clinical, and lifestyle factors. We systematically varied PCA components and implemented a stacking model comprising random forest, decision tree, and K-nearest neighbors (KNN).Our findings demonstrate that setting PCA components to 16 optimally enhanced predictive accuracy, achieving a remarkable 98.6% accuracy in stroke prediction. Evaluation metrics underscored the robustness of our approach in handling class imbalance and improving model performance, also comparative analyses against traditional machine learning algorithms such as SVM, logistic regression, and Naive Bayes highlighted the superiority of our proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测中风发生率:一种具有特征选择和数据预处理功能的叠加式机器学习方法。
脑卒中预测仍是医疗保健领域的一个重要研究领域,旨在加强早期干预和患者护理策略。本研究探讨了机器学习技术,尤其是主成分分析(PCA)和堆叠集合方法,在基于人口、临床和生活方式因素预测脑卒中发生率方面的功效。我们系统地改变了 PCA 分量,并实施了一个由随机森林、决策树和 K-nearest neighbors (KNN) 组成的堆叠模型。我们的研究结果表明,将 PCA 分量设置为 16 最能提高预测准确性,中风预测准确率高达 98.6%。评估指标强调了我们的方法在处理类不平衡和提高模型性能方面的稳健性,与 SVM、逻辑回归和 Naive Bayes 等传统机器学习算法的比较分析也凸显了我们提出的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. Mining contextually meaningful subgraphs from a vertex-attributed graph. Robust double machine learning model with application to omics data. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. Closha 2.0: a bio-workflow design system for massive genome data analysis on high performance cluster infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1