Qifeng Liu, Tao Zhou, Chi Cheng, Jin Ma, Marzia Hoque Tania
{"title":"Hybrid generative adversarial network based on frequency and spatial domain for histopathological image synthesis.","authors":"Qifeng Liu, Tao Zhou, Chi Cheng, Jin Ma, Marzia Hoque Tania","doi":"10.1186/s12859-025-06057-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the complexity and cost of preparing histopathological slides, deep learning-based methods have been developed to generate high-quality histological images. However, existing approaches primarily focus on spatial domain information, neglecting the periodic information in the frequency domain and the complementary relationship between the two domains. In this paper, we proposed a generative adversarial network that employs a cross-attention mechanism to extract and fuse features across spatial and frequency domains. The method optimizes frequency domain features using spatial domain guidance and refines spatial features with frequency domain information, preserving key details while eliminating redundancy to generate high-quality histological images.</p><p><strong>Results: </strong>Our model incorporates a variable-window mixed attention module to dynamically adjust attention window sizes, capturing both local details and global context. A spectral filtering module enhances the extraction of repetitive textures and periodic structures, while a cross-attention fusion module dynamically weights features from both domains, focusing on the most critical information to produce realistic and detailed images.</p><p><strong>Conclusions: </strong>The proposed method achieves efficient spatial-frequency domain fusion, significantly improving image generation quality. Experiments on the Patch Camelyon dataset show superior performance over eight state-of-the-art models across five metrics. This approach advances automated histopathological image generation with potential for clinical applications.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"29"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06057-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Due to the complexity and cost of preparing histopathological slides, deep learning-based methods have been developed to generate high-quality histological images. However, existing approaches primarily focus on spatial domain information, neglecting the periodic information in the frequency domain and the complementary relationship between the two domains. In this paper, we proposed a generative adversarial network that employs a cross-attention mechanism to extract and fuse features across spatial and frequency domains. The method optimizes frequency domain features using spatial domain guidance and refines spatial features with frequency domain information, preserving key details while eliminating redundancy to generate high-quality histological images.
Results: Our model incorporates a variable-window mixed attention module to dynamically adjust attention window sizes, capturing both local details and global context. A spectral filtering module enhances the extraction of repetitive textures and periodic structures, while a cross-attention fusion module dynamically weights features from both domains, focusing on the most critical information to produce realistic and detailed images.
Conclusions: The proposed method achieves efficient spatial-frequency domain fusion, significantly improving image generation quality. Experiments on the Patch Camelyon dataset show superior performance over eight state-of-the-art models across five metrics. This approach advances automated histopathological image generation with potential for clinical applications.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.