Freestanding Penta-Twinned Pd–Ag Nanosheets

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-23 DOI:10.1021/acsami.4c14086
Bon Seung Goo, Jin Wook Baek, Minji Seo, Hyeon Jeong Kim, Dae Han Wi, Yongmin Kwon, Dong Ki Yoon, Young Wook Lee, Sang Woo Han
{"title":"Freestanding Penta-Twinned Pd–Ag Nanosheets","authors":"Bon Seung Goo, Jin Wook Baek, Minji Seo, Hyeon Jeong Kim, Dae Han Wi, Yongmin Kwon, Dong Ki Yoon, Young Wook Lee, Sang Woo Han","doi":"10.1021/acsami.4c14086","DOIUrl":null,"url":null,"abstract":"2D metal nanosheets have attracted significant attention as efficient catalysts for various important chemical reactions. However, the development of metal nanosheets with controlled compositions and morphologies has been slow due to the challenges associated with synthesizing thermodynamically unfavorable 2D structures. Herein, we report a synthesis route of freestanding Pd–Ag penta-twinned nanosheets (Pd–Ag ptNSs) with distinct 5-fold twin boundaries. Through the coreduction of Ag and Pd precursors on presynthesized Pd ptNSs, Ag could be homogeneously alloyed with Pd, leading to the formation of well-defined Pd–Ag ptNSs. The promotional effects of the bimetallic composition, 2D structure, and twin boundaries on catalysis were studied by using Pd–Ag ptNS-catalyzed H<sub>2</sub> production from formic acid decomposition as a model reaction. Notably, the catalytic activity of the Pd–Ag ptNSs drastically outperformed those of monometallic, bimetallic, and 3D counterparts, such as Pd ptNSs, Pd–Ag nanosheets without a TB, and Pd–Ag octahedral nanocrystals, demonstrating the promising potential of the integration of twin boundaries and multiple compositions in the development of high-performance 2D nanocatalysts.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14086","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D metal nanosheets have attracted significant attention as efficient catalysts for various important chemical reactions. However, the development of metal nanosheets with controlled compositions and morphologies has been slow due to the challenges associated with synthesizing thermodynamically unfavorable 2D structures. Herein, we report a synthesis route of freestanding Pd–Ag penta-twinned nanosheets (Pd–Ag ptNSs) with distinct 5-fold twin boundaries. Through the coreduction of Ag and Pd precursors on presynthesized Pd ptNSs, Ag could be homogeneously alloyed with Pd, leading to the formation of well-defined Pd–Ag ptNSs. The promotional effects of the bimetallic composition, 2D structure, and twin boundaries on catalysis were studied by using Pd–Ag ptNS-catalyzed H2 production from formic acid decomposition as a model reaction. Notably, the catalytic activity of the Pd–Ag ptNSs drastically outperformed those of monometallic, bimetallic, and 3D counterparts, such as Pd ptNSs, Pd–Ag nanosheets without a TB, and Pd–Ag octahedral nanocrystals, demonstrating the promising potential of the integration of twin boundaries and multiple compositions in the development of high-performance 2D nanocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Transparent, Flexible, Responsive Switching “Delayed” Amphiphilic Coatings Designed on the Basis of the Full-Cycle Antifouling Strategy Freestanding Penta-Twinned Pd–Ag Nanosheets Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics Liquid Metal-Based Elastomer Composite with Selective Switchable Adhesion to Solids High-Efficiency Microwave Wireless Power Transmission via Reflective Phase Gradient Metasurfaces and Surface Wave Aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1