High-Efficiency Microwave Wireless Power Transmission via Reflective Phase Gradient Metasurfaces and Surface Wave Aggregation

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-23 DOI:10.1021/acsami.4c11720
Han Xiong, Qiang Yang, Yi-Zhe Huang, Jia-Hao Deng, Ben-Xin Wang, Huai-Qing Zhang
{"title":"High-Efficiency Microwave Wireless Power Transmission via Reflective Phase Gradient Metasurfaces and Surface Wave Aggregation","authors":"Han Xiong, Qiang Yang, Yi-Zhe Huang, Jia-Hao Deng, Ben-Xin Wang, Huai-Qing Zhang","doi":"10.1021/acsami.4c11720","DOIUrl":null,"url":null,"abstract":"Microwave Wireless Power Transfer (MWPT) technology is crucial for emergency power supply during natural disasters and powering off-grid equipment. Traditional antenna arrays, however, suffer from low energy capture efficiency, difficult impedance matching, complex synthetic networks, and intricate manufacturing processes. This paper introduces a microwave energy receiver design utilizing Reflective Phase Gradient Metasurfaces (R-PGMs) and surface wave energy convergence technology. The design leverages the effective plane wave-to-surface wave conversion capability of R-PGMs to transform incident microwave energy into a surface wave mode, which is then efficiently harvested using a circular energy convergence array before being output to a coupling port. By optimizing R-PGM parameters, an ideal 60° phase gradient distribution is achieved, facilitating the focus of surface wave energy via dispersion characteristics. These components are integrated into a hybrid antenna array, complemented by a matched energy output port structure. Numerical simulations show that this array can efficiently convert microwave energy from plane waves to surface waves, achieving a conversion efficiency of 85.32% and a collection efficiency of 68.26%. Experimental results corroborate these findings, with peak energy collection efficiency reaching 64.68% at 5.8 GHz and an RF-DC conversion efficiency of 42%, confirming the design’s efficacy. Compared to conventional methods, this design simplifies the system by avoiding complex combining networks and significantly enhances the efficiency of microwave MWPT.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11720","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microwave Wireless Power Transfer (MWPT) technology is crucial for emergency power supply during natural disasters and powering off-grid equipment. Traditional antenna arrays, however, suffer from low energy capture efficiency, difficult impedance matching, complex synthetic networks, and intricate manufacturing processes. This paper introduces a microwave energy receiver design utilizing Reflective Phase Gradient Metasurfaces (R-PGMs) and surface wave energy convergence technology. The design leverages the effective plane wave-to-surface wave conversion capability of R-PGMs to transform incident microwave energy into a surface wave mode, which is then efficiently harvested using a circular energy convergence array before being output to a coupling port. By optimizing R-PGM parameters, an ideal 60° phase gradient distribution is achieved, facilitating the focus of surface wave energy via dispersion characteristics. These components are integrated into a hybrid antenna array, complemented by a matched energy output port structure. Numerical simulations show that this array can efficiently convert microwave energy from plane waves to surface waves, achieving a conversion efficiency of 85.32% and a collection efficiency of 68.26%. Experimental results corroborate these findings, with peak energy collection efficiency reaching 64.68% at 5.8 GHz and an RF-DC conversion efficiency of 42%, confirming the design’s efficacy. Compared to conventional methods, this design simplifies the system by avoiding complex combining networks and significantly enhances the efficiency of microwave MWPT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Transparent, Flexible, Responsive Switching “Delayed” Amphiphilic Coatings Designed on the Basis of the Full-Cycle Antifouling Strategy Freestanding Penta-Twinned Pd–Ag Nanosheets Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics Liquid Metal-Based Elastomer Composite with Selective Switchable Adhesion to Solids High-Efficiency Microwave Wireless Power Transmission via Reflective Phase Gradient Metasurfaces and Surface Wave Aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1