{"title":"Saccades and pivoting during positive mechanotaxis in larval zebrafish.","authors":"Georgie Davies, Rodrigo De Marco","doi":"10.17912/micropub.biology.001349","DOIUrl":null,"url":null,"abstract":"<p><p>Many animals are drawn to prominent sensory cues. Larval zebrafish consistently show attraction to minute water motions (mWMs). This positive mechanotaxis involves scanning-like eye movements (EMs) and changes in body orientation (pivoting), which likely enhance sensory detection. Video analysis shows that EMs increase during mWMs and negatively correlate with locomotion. Both the strength of mWMs and rearing conditions influence EM frequency, with alterations occurring after mWM offset. Additionally, EMs often accompany pivoting. The quantitative data presented here will aid in further exploring the neural bases of visual responses and positive mechanotaxis.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many animals are drawn to prominent sensory cues. Larval zebrafish consistently show attraction to minute water motions (mWMs). This positive mechanotaxis involves scanning-like eye movements (EMs) and changes in body orientation (pivoting), which likely enhance sensory detection. Video analysis shows that EMs increase during mWMs and negatively correlate with locomotion. Both the strength of mWMs and rearing conditions influence EM frequency, with alterations occurring after mWM offset. Additionally, EMs often accompany pivoting. The quantitative data presented here will aid in further exploring the neural bases of visual responses and positive mechanotaxis.