Lei Jin, Gurpreet Singh Selopal, Xiao Wei Sun, Federico Rosei
{"title":"Core‐Shell Colloidal Quantum Dots for Energy Conversion","authors":"Lei Jin, Gurpreet Singh Selopal, Xiao Wei Sun, Federico Rosei","doi":"10.1002/aenm.202403574","DOIUrl":null,"url":null,"abstract":"Colloidal quantum dots (QDs) are promising building blocks in optoelectronic devices, mainly due to their size/shape/composition‐tunable properties. Core–shell QDs, in particular, offer enhanced stability, mitigated photoluminescence blinking, and suppressed non‐radiative recombination compared to plain QDs, making them highly promising for energy conversion applications such as photovoltaic devices, luminescent solar concentrators, solar‐driven hydrogen production, and light‐emitting diodes. Here, a comprehensive analysis of core–shell QDs in energy conversion technologies is provided. Emerging design strategies are explored and various synthetic methods focusing on optimizing band structure, band alignment, and optical properties are critically explored. Insights into the structure‐property relationship are discussed, highlighting recent advancements and the most effective strategies to enhance energy conversion performance. The review is concluded by addressing key challenges and proposing future research directions, emphasizing the need for rational design, precise synthesis, effective surface engineering, and the integration of machine learning to achieve optimized properties for technological applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403574","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidal quantum dots (QDs) are promising building blocks in optoelectronic devices, mainly due to their size/shape/composition‐tunable properties. Core–shell QDs, in particular, offer enhanced stability, mitigated photoluminescence blinking, and suppressed non‐radiative recombination compared to plain QDs, making them highly promising for energy conversion applications such as photovoltaic devices, luminescent solar concentrators, solar‐driven hydrogen production, and light‐emitting diodes. Here, a comprehensive analysis of core–shell QDs in energy conversion technologies is provided. Emerging design strategies are explored and various synthetic methods focusing on optimizing band structure, band alignment, and optical properties are critically explored. Insights into the structure‐property relationship are discussed, highlighting recent advancements and the most effective strategies to enhance energy conversion performance. The review is concluded by addressing key challenges and proposing future research directions, emphasizing the need for rational design, precise synthesis, effective surface engineering, and the integration of machine learning to achieve optimized properties for technological applications.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.