Surface Corrosion-Resistant and Multi-Scenario MoNiP Electrode for Efficient Industrial-Scale Seawater Splitting

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-30 DOI:10.1002/aenm.202403009
Weiju Hao, Xunwei Ma, Lincai Wang, Yanhui Guo, Qingyuan Bi, Jinchen Fan, Hexing Li, Guisheng Li
{"title":"Surface Corrosion-Resistant and Multi-Scenario MoNiP Electrode for Efficient Industrial-Scale Seawater Splitting","authors":"Weiju Hao, Xunwei Ma, Lincai Wang, Yanhui Guo, Qingyuan Bi, Jinchen Fan, Hexing Li, Guisheng Li","doi":"10.1002/aenm.202403009","DOIUrl":null,"url":null,"abstract":"The construction of efficient and durable multifunctional electrodes for industrial-scale hydrogen production presents a main challenge. Herein, molybdenum-modulated phosphorus-based catalytic electrodes (Mo-NiP@NF) are prepared via mild electroless plating. Heteroatoms doping or heterostructures construction can reconfigure the intrinsic electronic structure of the pre-catalyst and optimizes the key intermediates adsorption. Moreover, the (hypo/meta-)phosphite anions (PO<i><sub>x</sub></i><sup>δ−</sup>) and molybdate ions (MoO<i><sub>x</sub></i><sup>δ−</sup>) on the electrode surface of Mo-NiP@NF afford resistance to chloride (Cl<sup>−</sup>) corrosion. Mo-NiP@NF exhibits ultralow overpotentials of 278/550 and 282/590 mV at 1 A cm<sup>−2</sup> during the hydrogen/oxygen evolution reaction (HER/OER) in alkaline simulated and real seawater, respectively, whereas catalytic overall seawater splitting (OWS) reach 1 A cm<sup>−2</sup> at 1.96 and 1.97 V<sub>cell</sub>. Remarkably, Mo-NiP@NF maintains stable operation for 1500 h in OWS. The scalability of Mo-NiP@NF allowing the assembly of proton exchange membrane (PEM) electrolyzer powered by photovoltaic energy, simulating a portable hydrogen-oxygen respirator provides an oxygen/hydrogen flows of 160/320 mL min<sup>−1</sup>. Expanding further, the trace ruthenium-loaded Mo-NiP@NF catalyst sodium borohydride (NaBH<sub>4</sub>) hydrolysis achieving a hydrogen generation rate (HGR) of 11049.2 mL min<sup>−1</sup> g<sup>−1</sup>. This work provides strategic innovations and optimization solutions for the economical and mild construction of multi-scenario durable green energy conversion materials at industrial-scale application.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of efficient and durable multifunctional electrodes for industrial-scale hydrogen production presents a main challenge. Herein, molybdenum-modulated phosphorus-based catalytic electrodes (Mo-NiP@NF) are prepared via mild electroless plating. Heteroatoms doping or heterostructures construction can reconfigure the intrinsic electronic structure of the pre-catalyst and optimizes the key intermediates adsorption. Moreover, the (hypo/meta-)phosphite anions (POxδ−) and molybdate ions (MoOxδ−) on the electrode surface of Mo-NiP@NF afford resistance to chloride (Cl) corrosion. Mo-NiP@NF exhibits ultralow overpotentials of 278/550 and 282/590 mV at 1 A cm−2 during the hydrogen/oxygen evolution reaction (HER/OER) in alkaline simulated and real seawater, respectively, whereas catalytic overall seawater splitting (OWS) reach 1 A cm−2 at 1.96 and 1.97 Vcell. Remarkably, Mo-NiP@NF maintains stable operation for 1500 h in OWS. The scalability of Mo-NiP@NF allowing the assembly of proton exchange membrane (PEM) electrolyzer powered by photovoltaic energy, simulating a portable hydrogen-oxygen respirator provides an oxygen/hydrogen flows of 160/320 mL min−1. Expanding further, the trace ruthenium-loaded Mo-NiP@NF catalyst sodium borohydride (NaBH4) hydrolysis achieving a hydrogen generation rate (HGR) of 11049.2 mL min−1 g−1. This work provides strategic innovations and optimization solutions for the economical and mild construction of multi-scenario durable green energy conversion materials at industrial-scale application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效工业级海水分馏的耐表面腐蚀和多情景 MoNiP 电极
为工业规模制氢建造高效耐用的多功能电极是一项重大挑战。在此,我们通过温和的无电解电镀法制备了钼调制磷基催化电极(Mo-NiP@NF)。异质原子掺杂或异质结构的构建可以重构前催化剂的固有电子结构,优化关键中间产物的吸附。此外,Mo-NiP@NF 电极表面的(次/金属)亚磷酸阴离子(POxδ-)和钼酸根离子(MoOxδ-)具有抗氯化物(Cl-)腐蚀的能力。在碱性模拟海水和真实海水中进行氢/氧进化反应(HER/OER)时,Mo-NiP@NF 在 1 A cm-2 时分别显示出 278/550 和 282/590 mV 的超低过电位,而在 1.96 和 1.97 Vcell 时催化整体海水分裂(OWS)达到 1 A cm-2。值得注意的是,Mo-NiP@NF 在 OWS 中可保持稳定运行 1500 小时。Mo-NiP@NF 的可扩展性使得质子交换膜 (PEM) 电解槽的组装能够以光伏能源为动力,模拟便携式氢氧呼吸器,提供 160/320 mL min-1 的氧气/氢气流量。进一步扩展,痕量钌负载的 Mo-NiP@NF 催化剂硼氢化钠(NaBH4)水解的氢气生成率(HGR)达到 11049.2 mL min-1 g-1。这项工作为在工业规模应用中经济、温和地构建多场景耐用绿色能源转换材料提供了战略创新和优化解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Innovative Anode Design to Enhance Both Volumetric and Gravimetric Energy Densities of LiCoO2||Graphite Pouch Cells Surface Corrosion-Resistant and Multi-Scenario MoNiP Electrode for Efficient Industrial-Scale Seawater Splitting Octahedral Co2+-O-Co3+ in Mixed Cobalt Spinel Promotes Active and Stable Acidic Oxygen Evolution Co-Generation of Electricity and Chemicals From Methane Using Direct Internal Reforming Solid Oxide Fuel Cells Core‐Shell Colloidal Quantum Dots for Energy Conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1