Octahedral Co2+-O-Co3+ in Mixed Cobalt Spinel Promotes Active and Stable Acidic Oxygen Evolution

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-29 DOI:10.1002/aenm.202404007
Daojin Zhou, Jiaqi Yu, Jialun Tang, Xiao-Yan Li, Pengfei Ou
{"title":"Octahedral Co2+-O-Co3+ in Mixed Cobalt Spinel Promotes Active and Stable Acidic Oxygen Evolution","authors":"Daojin Zhou, Jiaqi Yu, Jialun Tang, Xiao-Yan Li, Pengfei Ou","doi":"10.1002/aenm.202404007","DOIUrl":null,"url":null,"abstract":"Cobalt (Co)-based oxides show promising activity as precious metal-free catalysts for the oxygen evolution reaction in proton exchange membrane water electrolysis, but the dissolution of Co has limited the durability of Co<sub>3</sub>O<sub>4</sub> at industrially relevant current densities. This work demonstrates that cation in an octahedral coordination environment accounts for the oxygen evolution activity. Using a mixed inverse-normal phase spinel Co<i><sub>x</sub></i>Ga<sub>(3-</sub><i><sub>x</sub></i><sub>)</sub>O<sub>4</sub> as a proof-of-concept example, the designed Co<sup>2+</sup>-O-Co<sup>3+</sup> motifs in octahedral sites trigger oxygen evolution through a kinetically favorable radical coupling pathway. Furthermore, lattice oxygen exchange, a leading factor in catalyst structural degradation for normal Co<sub>3</sub>O<sub>4</sub>, is suppressed, as evidenced by isotopic labeling experiments and theoretical calculations. With the optimized catalyst, Co<sub>1.8</sub>Ga<sub>1.2</sub>O<sub>4</sub>, an overpotential of 310 mV at 10 mA cm<sup>−2</sup> is reported, with stable operation at 200 mA cm<sup>−2</sup> for 200 h in a three-electrode setup, and a proton exchange membrane electrolyzer operating at 200 mA cm<sup>−2</sup> for 450 h.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt (Co)-based oxides show promising activity as precious metal-free catalysts for the oxygen evolution reaction in proton exchange membrane water electrolysis, but the dissolution of Co has limited the durability of Co3O4 at industrially relevant current densities. This work demonstrates that cation in an octahedral coordination environment accounts for the oxygen evolution activity. Using a mixed inverse-normal phase spinel CoxGa(3-x)O4 as a proof-of-concept example, the designed Co2+-O-Co3+ motifs in octahedral sites trigger oxygen evolution through a kinetically favorable radical coupling pathway. Furthermore, lattice oxygen exchange, a leading factor in catalyst structural degradation for normal Co3O4, is suppressed, as evidenced by isotopic labeling experiments and theoretical calculations. With the optimized catalyst, Co1.8Ga1.2O4, an overpotential of 310 mV at 10 mA cm−2 is reported, with stable operation at 200 mA cm−2 for 200 h in a three-electrode setup, and a proton exchange membrane electrolyzer operating at 200 mA cm−2 for 450 h.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合钴尖晶石中的八面体 Co2+-O-Co3+ 促进了活跃而稳定的酸性氧演化
钴(Co)基氧化物作为质子交换膜水电解中氧进化反应的无贵金属催化剂显示出良好的活性,但 Co 的溶解限制了 Co3O4 在工业相关电流密度下的耐久性。这项研究表明,八面体配位环境中的阳离子具有氧进化活性。以混合逆正相尖晶石 CoxGa(3-x)O4 为概念验证实例,八面体位点中设计的 Co2+-O-Co3+ 主题元素通过动力学上有利的自由基耦合途径引发了氧进化。此外,正如同位素标记实验和理论计算所证明的那样,晶格氧交换(普通 Co3O4 催化剂结构退化的主要因素)被抑制了。经过优化的 Co1.8Ga1.2O4 催化剂在 10 mA cm-2 下的过电位为 310 mV,在三电极装置中以 200 mA cm-2 下稳定运行 200 小时,质子交换膜电解槽在 200 mA cm-2 下运行 450 小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Innovative Anode Design to Enhance Both Volumetric and Gravimetric Energy Densities of LiCoO2||Graphite Pouch Cells Surface Corrosion-Resistant and Multi-Scenario MoNiP Electrode for Efficient Industrial-Scale Seawater Splitting Octahedral Co2+-O-Co3+ in Mixed Cobalt Spinel Promotes Active and Stable Acidic Oxygen Evolution Co-Generation of Electricity and Chemicals From Methane Using Direct Internal Reforming Solid Oxide Fuel Cells Core‐Shell Colloidal Quantum Dots for Energy Conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1