{"title":"Low-temperature soldering using Sn/Bi electrodeposited bilayer","authors":"Wei-Li Wang , Sheng-Jye Cherng , Yu-Ting Huang , Runhua Gao , Hiroaki Tatsumi , Hiroshi Nishikawa , Chih-Ming Chen","doi":"10.1016/j.mssp.2024.109056","DOIUrl":null,"url":null,"abstract":"<div><div>Low-temperature soldering is a joining technology that attracts considerable attention in recent years due to its potential in energy saving and carbon reduction. Eutectic SnBi alloy is a common low-temperature solder. The material manufacturing using cost-effective electrodeposition suffers from composition control problem caused by very different reduction potentials between Sn and Bi. In this study, a Sn/Bi bilayer structure is constructed using electrodeposition and the microstructural evolution under thermal annealing is investigated in detail to evaluate its potential in replacement of eutectic SnBi alloy. Results show that interfacial liquation occurs rapidly in the Sn/Bi bilayer structure heated at 180 °C for only 5 s, and the bilayer structure completely transforms into a eutectic-like structure after 30 s. The microstructural evolution history is established with the help of phase diagram and electron microscopy examination. Shear test results indicate that the eutectic-like structure exhibits good mechanical property comparable to commercial eutectic SnBi solder paste. The rapid phase transformation feature and high shear strength make the Sn/Bi bilayer structure a promising candidate for low-temperature joining applications.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109056"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009521","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Low-temperature soldering is a joining technology that attracts considerable attention in recent years due to its potential in energy saving and carbon reduction. Eutectic SnBi alloy is a common low-temperature solder. The material manufacturing using cost-effective electrodeposition suffers from composition control problem caused by very different reduction potentials between Sn and Bi. In this study, a Sn/Bi bilayer structure is constructed using electrodeposition and the microstructural evolution under thermal annealing is investigated in detail to evaluate its potential in replacement of eutectic SnBi alloy. Results show that interfacial liquation occurs rapidly in the Sn/Bi bilayer structure heated at 180 °C for only 5 s, and the bilayer structure completely transforms into a eutectic-like structure after 30 s. The microstructural evolution history is established with the help of phase diagram and electron microscopy examination. Shear test results indicate that the eutectic-like structure exhibits good mechanical property comparable to commercial eutectic SnBi solder paste. The rapid phase transformation feature and high shear strength make the Sn/Bi bilayer structure a promising candidate for low-temperature joining applications.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.