Semi-Supervised Clustering of Sparse Graphs: Crossing the Information-Theoretic Threshold.

Junda Sheng, Thomas Strohmer
{"title":"Semi-Supervised Clustering of Sparse Graphs: Crossing the Information-Theoretic Threshold.","authors":"Junda Sheng, Thomas Strohmer","doi":"10.4208/jml.230624","DOIUrl":null,"url":null,"abstract":"<p><p>The stochastic block model is a canonical random graph model for clustering and community detection on network-structured data. Decades of extensive study on the problem have established many profound results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from a mathematical and an applied standpoint. It states that no estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold. Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a fundamental limitation will disappear completely. We prove that with an arbitrary fraction of the labels revealed, the detection problem is feasible throughout the parameter domain. Moreover, we introduce two efficient algorithms, one combinatorial and one based on optimization, to integrate label information with graph structures. Our work brings a new perspective to the stochastic model of networks and semidefinite program research.</p>","PeriodicalId":520277,"journal":{"name":"Journal of machine learning","volume":"3 1","pages":"64-106"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/jml.230624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic block model is a canonical random graph model for clustering and community detection on network-structured data. Decades of extensive study on the problem have established many profound results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from a mathematical and an applied standpoint. It states that no estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold. Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a fundamental limitation will disappear completely. We prove that with an arbitrary fraction of the labels revealed, the detection problem is feasible throughout the parameter domain. Moreover, we introduce two efficient algorithms, one combinatorial and one based on optimization, to integrate label information with graph structures. Our work brings a new perspective to the stochastic model of networks and semidefinite program research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏图的半监督聚类:跨越信息论阈值
随机块模型是一种典型的随机图模型,用于网络结构数据的聚类和群落检测。数十年来对这一问题的广泛研究取得了许多深远的成果,其中凯斯顿-斯蒂格姆阈值的相变从数学和应用的角度来看都特别有趣。它指出,如果模型参数低于某个临界值,那么在稀疏图上,基于网络拓扑结构的估算器的性能都不会大大优于偶然性。然而,如果我们将视野稍稍扩展到无处不在的半监督环境,这种基本限制就会完全消失。我们证明,在揭示任意部分标签的情况下,检测问题在整个参数域都是可行的。此外,我们还介绍了两种高效算法,一种是组合算法,另一种是基于优化的算法,用于将标签信息与图结构相结合。我们的研究为网络随机模型和半有限程序研究带来了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Supervised Clustering of Sparse Graphs: Crossing the Information-Theoretic Threshold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1