pH-induced morphological reversible transition from microparticles to vesicles for effective bacteria entrapment

IF 5.8 2区 化学 Q1 POLYMER SCIENCE European Polymer Journal Pub Date : 2024-10-19 DOI:10.1016/j.eurpolymj.2024.113511
Vladimir Sincari , Svetlana Lukáš Petrova , Eliézer Jäger , Alessandro Jäger , Rafał Konefał , Veronika Gajdošová , Miroslav Šlouf , Hympánová Michaela , Jan Marek , Ondrej Soukup , Martin Hrubý
{"title":"pH-induced morphological reversible transition from microparticles to vesicles for effective bacteria entrapment","authors":"Vladimir Sincari ,&nbsp;Svetlana Lukáš Petrova ,&nbsp;Eliézer Jäger ,&nbsp;Alessandro Jäger ,&nbsp;Rafał Konefał ,&nbsp;Veronika Gajdošová ,&nbsp;Miroslav Šlouf ,&nbsp;Hympánová Michaela ,&nbsp;Jan Marek ,&nbsp;Ondrej Soukup ,&nbsp;Martin Hrubý","doi":"10.1016/j.eurpolymj.2024.113511","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer particles with stimuli-responsive properties offer promising applications in healthcare, chemical reactors, development of artificial cells and organelles, as well as in the entrapment of bacteria. In this study, a novel biocompatible, biodegradable, and pH-responsive diblock copolymer based on polylactide (PLA) and poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) was synthesized <em>via</em> a metal-free one-pot/simultaneous ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) approach (ROP/RAFT). This copolymer was then employed to produce highly monodisperse microparticles using microfluidics droplet generation technique. Utilizing confocal microscopy imaging, a reversible pH-induced morphological transition from microparticles to vesicle-like structures was observed at pH 5.1. The reversible shift in morphology from microparticles to giant vesicles (Vs) in acidic environments is triggered by the protonation of amino groups of the PDPA block, rendering vesicle surfaces positively charged − an advantageous feature for attracting and engulfing negatively charged bacteria. Initial validation involved electrostatic interactions with negatively charged latex resin beads followed by assessing interaction capabilities with gram-negative bacteria, <em>Escherichia coli (E. coli)</em>. Additionally, the reversible morphological transition of microparticles-to-vesicles was employed to study drug release at different pHs. This approach proven to be a promising strategy for targeted drug delivery and bacteria entrapment using smart pH-responsive microparticles.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113511"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724007729","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer particles with stimuli-responsive properties offer promising applications in healthcare, chemical reactors, development of artificial cells and organelles, as well as in the entrapment of bacteria. In this study, a novel biocompatible, biodegradable, and pH-responsive diblock copolymer based on polylactide (PLA) and poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) was synthesized via a metal-free one-pot/simultaneous ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) approach (ROP/RAFT). This copolymer was then employed to produce highly monodisperse microparticles using microfluidics droplet generation technique. Utilizing confocal microscopy imaging, a reversible pH-induced morphological transition from microparticles to vesicle-like structures was observed at pH 5.1. The reversible shift in morphology from microparticles to giant vesicles (Vs) in acidic environments is triggered by the protonation of amino groups of the PDPA block, rendering vesicle surfaces positively charged − an advantageous feature for attracting and engulfing negatively charged bacteria. Initial validation involved electrostatic interactions with negatively charged latex resin beads followed by assessing interaction capabilities with gram-negative bacteria, Escherichia coli (E. coli). Additionally, the reversible morphological transition of microparticles-to-vesicles was employed to study drug release at different pHs. This approach proven to be a promising strategy for targeted drug delivery and bacteria entrapment using smart pH-responsive microparticles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH 值诱导微粒向囊泡的形态可逆转变,从而有效地截留细菌
具有刺激响应特性的聚合物颗粒在医疗保健、化学反应器、人造细胞和细胞器的开发以及细菌诱捕等方面具有广阔的应用前景。本研究通过无金属一锅/同时开环聚合(ROP)和可逆加成-断裂链转移(RAFT)方法(ROP/RAFT)合成了一种新型生物相容性、可生物降解和 pH 值响应型二元共聚物,该共聚物基于聚乳酸(PLA)和聚(2-(二异丙基氨基)乙基甲基丙烯酸酯)(PDPA)。这种共聚物随后被用于利用微流控液滴生成技术生产高度单分散的微颗粒。利用共聚焦显微镜成像技术,在 pH 值为 5.1 时观察到了由 pH 值诱导的从微颗粒到类囊体结构的可逆形态转变。在酸性环境中,PDPA 嵌段的氨基发生质子化,使囊泡表面带正电--这是吸引和吞噬带负电细菌的有利特征,从而引发了从微颗粒到巨囊泡(Vs)的可逆形态转变。初步验证包括与带负电荷的乳胶树脂珠的静电相互作用,然后评估与革兰氏阴性细菌大肠杆菌(E. coli)的相互作用能力。此外,还利用微颗粒到囊泡的可逆形态转变来研究药物在不同 pH 值下的释放情况。这种方法被证明是利用智能 pH 响应微颗粒进行靶向给药和细菌截留的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
期刊最新文献
Hierarchical curing mechanism in epoxy/bismaleimide composites: Enhancing mechanical properties without compromising thermal stabilities Strong and conductive gelatin hydrogels enhanced by Hofmeister effect and genipin crosslinking for sensing applications Spontaneous gradient copolymers of N-vinylsuccinimide/N-vinylsuccinamic acid with O-cholesteryl (meth)acrylate via RAFT polymerization as potential drug delivery systems Mechanically strong, reprocessable and chemically recyclable furan-based poly(acylhydrazone)s materials with hydrogen-bonding networks Progress in synthesis and applications of Polyaniline-Coated Nanocomposites: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1